ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
J-C. BRIENT (LLR) 1  Introduction with pictures  Prototype design and construction  R&D on the design of the full scale calorimeter CALICE - ECAL silicon-tungsten.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
7 Sept 2007Paul Dauncey - Calorimetry1 UK Opportunities in SiD Calorimetry Paul Dauncey Imperial College London.
R Frey 9/15/20031 Si/W ECal Update Outline Progress on silicon and tungsten Progress on readout electronics EGS4 v Geant4 Ray Frey M. Breidenbach, D. Freytag,
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
KPiX - An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information Presented by Dietrich Freytag Stanford Linear.
1 Si-W ECal with Integrated Readout Mani Tripathi University of California, Davis LCWS08 Chicago Nov 17, 2008.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
Silicon-Tungsten EM Calorimeter R&D
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 1 Paul Dauncey Imperial College London.
EUDET JRA3 ECAL and FEE C. de La Taille (LAL-Orsay) EUDET status meeting DESY 10 sep 2006.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
M. Chefdeville LAPP, Annecy, France. Introduction  Motivations for a Digital hadronic calorimeter Count hits instead of measuring energy deposits Reduce.
24 Mar 2009Paul Dauncey1 CALICE-UK: The Final Curtain Paul Dauncey, Imperial College London.
SiD R&D tasks for the LOI - Subsystem R&D tasks - Summary of SiD R&D - Prioritization of R&D tasks -> Document for DoE/NSF ~Feb 2009 (Mainly based on Marty’s.
GLD-CAL and MPPC Based on talks by T. Takeshita and H. K. Kawagoe / Kobe-U 2005-Sep-16 MPPC
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 R&D Advances: SiW Calorimeter LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco.
ILC Calorimetry Test Beam Status Lei Xia ANL HEP.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Application of Large Scale GEM for Digital Hadron Calorimetry Jae Yu For GEM DHCAL Group June 11, 2011 TIPP 2011 The Goals 30cmx30cm 2D readout with KPiX.
EMCal Sensor Status (* M. Breidenbach*,
Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
ECFA Workshop, Warsaw, June G. Eckerlin Data Acquisition for the ILD G. Eckerlin ILD Meeting ILC ECFA Workshop, Warsaw, June 11 th 2008 DAQ Concept.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
ILC/EUDET developments at LAL Scientific council 23/9/05 B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
The ILD ECAL Jan th Paris Satoru Uozumi (Kyungpook Natl. Univ.) for the ILD ECAL group Contents :
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
Vincent Boudry LLR, École polytechnique LCTW'09 Orsay 2-5 November 2009 Calorimetry Hot spots.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
ECAL EUDET MODULE Summary talk
SiD Calorimeter R&D Collaboration
The ECal in the SiD LOI Overview of status and progress
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
LCDRD ECal R&D Physics goals drive the design
SiD Electronic Concepts
A Silicon-Tungsten ECal for the SiD Concept
Presentation transcript:

ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology Prototype  “Eudet Module” (integrated electronics)  Physics Prototype  currently in test beam (electronics external) MAPS ECal  Led by a sub-group of CALICE  More recent – needs some proof of principle work before test beams “U.S.” silicon-tungsten ECal  Has developed only an integrated approach from the start

ITBW07 R. Frey2 Goal of this R&D The physics case implies a highly segmented “imaging calorimeter” with modest EM energy resolution  Si-W The key to making this practical is a highly integrated electronic readout: readout channel count = pixel count /  1000 requires low power budget (passive cooling) must handle the large dynamic range of energy depositions (few thousand) with excellent S/N This takes some time to develop (getting close). Testing in beams will be crucial. Design a practical ECal which (1) meets (or exceeds) the physics requirements (2) with a technology that would actually work at the ILC.

3 The “U.S.” Silicon-Tungsten ECal R&D Currently optimized for the SiD concept Baseline configuration: transverse segmentation: 12 mm 2 pixels longitudinal: (20 x 5/7 X 0 ) + (10 x 10/7 X 0 )  17%/sqrt(E) 1 mm readout gaps  13 mm effective Moliere radius

ITBW07 R. Frey4 US Si-W ECal R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros Stanford Linear Accelerator Center J. Brau, R. Frey, D. Strom, M. Robinson, A.Tubman U. Oregon V. Radeka Brookhaven National Lab B. Holbrook, R. Lander, M. Tripathi UC Davis S. Adloff, F. Cadoux, J. Jacquemier, Y. Karyotakis LAPP Annecy KPiX readout chip downstream readout detector, cable development mechanical design and integration detector development readout electronics cable development bump bonding mechanical design and integration

ITBW07 R. Frey 5 Technological prototype : “EUDET module” Front-end ASICs embedded in detector Very high level of integration Ultra-low power with pulsed mode FLC_TECH1 ASIC prototype in 0.35 µm SiGe All communications via edge 4,000 ch/slab, minimal room, access, power small data volume (~ few 100 kbyte/s/slab) « Stitchable motherboards » Elementary motherboard ‘stitchable’ 24*24 cm ~500 ch. ~8 FE ASICS ©H. Videau (LLR)

6

ITBW07 R. Frey7 “Imaging Calorimeters” A highly segmented ECal is part of the overall detector tracking (charged and neutrals)

ITBW07 R. Frey8 Segmentation requirement In general, we wish to resolve individual photons in jets, tau decays, etc. The resolving power depends on Moliere radius and segmentation. We want segmentation significantly smaller than R m Two EM-shower separability in LEP data with the OPAL Si-W LumCal (David Strom)

9 Silicon detector layout and segmentation – U.S. (KPiX) Silicon is easily segmented KPiX readout chip is designed for 12 mm 2 pixels (1024 pixels for 6 inch wafer) Cost nearly independent of seg. Limit on seg. from chip power (  2 mm 2 ) Fully functional prototype (Hamamatsu)

10 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 10 ECFA 2006, Valencia 10 ECFA 2006, Valencia Features of the Monolithic Active Pixel Sensor (MAPS) -based calorimeter: ●Binary readout: hit or no hit per pixel (1-bit ADC) ●Pixels are small enough to ensure low probability of more than one particle passing through a pixel ●With ~100 particles/mm 2 in the shower core and 1% probability of double hit the pixel size should be ~40 μm×40 μm ●Current design with 50 μm×50 μm pixels – see Yoshi Mikami’s talk ●Timestamps and hit pixel numbers stored in memory on sensor ●Information read out in between trains ●Total number of ECAL pixels around 8×10 11 : Terapixel system ●Only monolithic designs can cope with that number of pixels – hence MAPS MAPS-based ECAL Design Konstantin Stefanov On behalf of J. Crooks, P. Dauncey, A.-M. Magnan, Y. Mikami, R. Turchetta, M. Tyndel, G. Villani, N. Watson, J. Wilson Valencia

ITBW07 R. Frey11 Critical parameter for R M is the gap between layers

ITBW07 R. Frey12 Tungsten Si Detector KPix Kapton Kapton Data (digital) Cable Bump Bonds Metallization on detector from KPix to cable Thermal conduction adhesive Heat Flow US Si-W readout gap schematic cross section Gap  1 mm

ITBW07 R. Frey13 Data Concentrator “Longitudinal” Data Cable “Transverse” Data Cable Detectors Readout Chip “KPix” Tungsten Radiator Locating Pins Conceptual Schematic – Not to any scale!!! ~ 1m

ITBW07 R. Frey 14 EUDET - Detector slab (2) Exploded view Chip « inside » Connection between 2 PCB 7 “unit” PCB “end” PCB de La Taille

ITBW07 R. Frey 15 One channel de la Taille

ITBW07 R. Frey 16 SKIROC for W-Si ECAL Silicon Kalorimeter Integrated Read Out Chip (Nov 06) 36 channels with 16 bits Preamp + bi-gain shaper + autotrigger + analog memory + Wilkinson ADC Digital part outside in a FPGA for lack of time and increased flexibility

ITBW07 R. Frey17 KPiX chip One channel of 1024 Si pixel Dynamic gain select Event trigger Leakage current subtraction calibration Storage until end of train. Pipeline depth presently is 4 13 bit A/D

ITBW07 R. Frey18 KPiX Cell 1 of channel prototypes: v1 delivered March 2006 v4 delivered Jan 16, 2007 It’s a complicated beast – may need a v5 before going to the full 1024-channel chip ?

ITBW07 R. Frey19 Dynamic Range KPiX-2 prototype on the bench Max signal: 500 GeV electron 1 MIP (4 fC)

ITBW07 R. Frey20 Power Pulsing de La Taille

ITBW07 R. Frey21 KPiX Power Passive-only cooling within the calorimeter seems to be OK. 18 mW average power per channel

ITBW07 R. Frey22 prototype Si detector studies

ITBW07 R. Frey23 v2 US Si detector – for full-depth test module 6 inch wafer mm 2 pixels ready to go except for funding

24 R&D Milestones – US Si-W I.Connect (bump bond) prototype KPiX to prototype detector with associated readout cables, etc Would benefit from test beam (SLAC?) A “technical” test II. Fabricate a full-depth ECal module with detectors and KPiX-1024 readout * – functionally  equivalent to the real detector Determine EM response in test beam – 2008 Ideally a clean 1-30 GeV electron beam (SLAC?) III.Test with an HCal module in hadron test beam (FNAL?) – 2008-? Test/calibrate the hadron shower simulations; measure response IV.Pre-assembly tests of actual ECal modules in beam – >2010  pending funding

25 Test beam requirements (wishes) For the initial testing (milestone I): nearly anything will do For the EM response test (milestone II) Dedicated electron or positron beam  1 – 30 GeV  Rate down to one (or zero) particles per bucket  Well-localized (  1 cm) beam Timing:  KPiX can run in an externally triggered mode Buffer depth of 4 Requires about 3-6 ms to complete a DAQ cycle  expect dead time For the test in the hadron beam line (milestone III): Sufficient quantity of electrons (low to high energy) to verify carry-over of response from the EM test, otherwise program mostly defined by HCal Will need a veto of transverse shower leakage out of the ECal (scintillators)

ITBW07 R. Frey26 Summary The R&D leading to an “ILC-ready” Si-W ECal technology is progressing well.  The MAPS concept provides an interesting alternative The Si-W R&D should result in full-depth modules which will require test beam evaluation  The CALICE Eudet module (30 layers x 12cm x 150cm)  The US Si-W module (30 layers x 16cm x 16cm) * These highly segmented, analog devices should provide an interesting test for simulation modeling of (early developing) hadron showers. May be crucial for understanding the HCal As we transition from R&D to “D” (>2010), there will certainly be a need for pre-assembly tests of the real ECal modules.