Briefly introduction to image/ video coding standard and FGS for MPEG-4 卓傳育.

Slides:



Advertisements
Similar presentations
Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
Advertisements

2005/01/191/14 Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li Fellow, IEEE IEEE Transactions on Circuits and Systems for.
T.Sharon-A.Frank 1 Multimedia Compression Basics.
Transform-domain Wyner-Ziv Codec for Video 教師 : 楊士萱 老師 學生 : 李桐照 同學.
1 Video Coding Concept Kai-Chao Yang. 2 Video Sequence and Picture Video sequence Large amount of temporal redundancy Intra Picture/VOP/Slice (I-Picture)
Computer Vision – Coding Standards
Source Coding for Video Application
SWE 423: Multimedia Systems
Chapter 7 End-to-End Data
Introduction to JPEG, MPEG 1/2, and H.261/H.263 Chuan-Yu Cho.
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li, Fellow, IEEE.
T.Sharon-A.Frank 1 Multimedia Size of Data Frame.
CSc 461/561 Multimedia Systems Part B: 2. Lossy Compression
H.264 / MPEG-4 Part 10 Nimrod Peleg March 2003.
CS :: Fall 2003 MPEG-1 Video (Part 1) Ketan Mayer-Patel.
JPEG Still Image Data Compression Standard
CMPT 365 Multimedia Systems
Fundamentals of Multimedia Chapter 10 Basic Video Compression Techniques Ze-Nian Li & Mark S. Drew 건국대학교 인터넷미디어공학부 임 창 훈.
ITU-T Recommendation H.261
1 Image and Video Compression: An Overview Jayanta Mukhopadhyay Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur,
An Introduction to H.264/AVC and 3D Video Coding.
MPEG-2 Digital Video Coding Standard
CSE679: MPEG r MPEG-1 r MPEG-2. MPEG r MPEG: Motion Pictures Experts Group r Standard for encoding videos/movies/motion pictures r Evolving set of standards.
MPEG-2 Scalability Support Nimrod Peleg Update: Dec.2000.
Image and Video Compression
Image Compression - JPEG. Video Compression MPEG –Audio compression Lossy / perceptually lossless / lossless 3 layers Models based on speech generation.
Lossy Compression Based on spatial redundancy Measure of spatial redundancy: 2D covariance Cov X (i,j)=  2 e -  (i*i+j*j) Vertical correlation   
Image Processing Architecture, © Oleh TretiakPage 1Lecture 9 ECEC-453 Image Processing Architecture Lecture 9, 2/12/ 2004 MPEG 1 Oleh Tretiak.
Introduction to JPEG Alireza Shafaei ( ) Fall 2005.
ECE472/572 - Lecture 12 Image Compression – Lossy Compression Techniques 11/10/11.
 Coding efficiency/Compression ratio:  The loss of information or distortion measure:
1 Image Compression. 2 GIF: Graphics Interchange Format Basic mode Dynamic mode A LZW method.
MPEG-1 and MPEG-2 Digital Video Coding Standards Author: Thomas Sikora Presenter: Chaojun Liang.
MPEG: (Moving Pictures Expert Group) A Video Compression Standard for Multimedia Applications Seo Yeong Geon Dept. of Computer Science in GNU.
Videos Mei-Chen Yeh. Outline Video representation Basic video compression concepts – Motion estimation and compensation Some slides are modified from.
CIS679: Multimedia Basics r Multimedia data type r Basic compression techniques.
Codec structuretMyn1 Codec structure In an MPEG system, the DCT and motion- compensated interframe prediction are combined. The coder subtracts the motion-compensated.
Image Compression Supervised By: Mr.Nael Alian Student: Anwaar Ahmed Abu-AlQomboz ID: IT College “Multimedia”
Digital Image Processing Image Compression
Compression video overview 演講者:林崇元. Outline Introduction Fundamentals of video compression Picture type Signal quality measure Video encoder and decoder.
An introduction to audio/video compression Dr. Malcolm Wilson.
Image Processing Architecture, © 2001, 2002 Oleh TretiakPage 1Lecture 15 ECEC-453 Image Processing Architecture 3/11/2004 Exam Review Oleh Tretiak Drexel.
Image Processing Architecture, © Oleh TretiakPage 1Lecture 10 ECEC 453 Image Processing Architecture Lecture 10, 2/17/2004 MPEG-2, Industrial.
Image/Video Coding Techniques for IPTV Applications Wen-Jyi Hwang ( 黃文吉 ) Department of Computer Science and Information Engineering, National Taiwan Normal.
1 The Embedded Block Coding with Optimized Truncation (EBCOT) in JPEG2000.
The JPEG Standard J. D. Huang Graduate Institute of Communication Engineering National Taiwan University, Taipei, Taiwan, ROC.
Fine Granularity Scalability in MPEG-4 Video by Weiping Li Presentation by Warren Cheung.
JPEG - JPEG2000 Isabelle Marque JPEGJPEG2000. JPEG Joint Photographic Experts Group Committe created in 1986 by: International Organization for Standardization.
Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li Presented by : Brian Eriksson.
JPEG Image Compression Standard Introduction Lossless and Lossy Coding Schemes JPEG Standard Details Summary.
Introduction to Image and Video Coding Algorithms
Block-based coding Multimedia Systems and Standards S2 IF Telkom University.
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 11 COMPRESSION.
(B1) What are the advantages and disadvantages of digital TV systems? Hint: Consider factors on noise, data security, VOD etc. 1.
JPEG. Introduction JPEG (Joint Photographic Experts Group) Basic Concept Data compression is performed in the frequency domain. Low frequency components.
MPEG CODING PROCESS. Contents  What is MPEG Encoding?  Why MPEG Encoding?  Types of frames in MPEG 1  Layer of MPEG1 Video  MPEG 1 Intra frame Encoding.
An introduction to audio/video compression Prepared by :: Bhatt shivani ( )
H. 261 Video Compression Techniques 1. H.261  H.261: An earlier digital video compression standard, its principle of MC-based compression is retained.
Introduction to H.264 / AVC Video Coding Standard Multimedia Systems Sharif University of Technology November 2008.
Present by 楊信弘 Advisor: 鄭芳炫
JPEG Compression What is JPEG? Motivation
CSI-447: Multimedia Systems
Multimedia Outline Compression RTP Scheduling Spring 2000 CS 461.
Image Compression The still image and motion images can be compressed by lossless coding or lossy coding. Principle of compression: - reduce the redundant.
Discrete Cosine Transform
JPEG implementation and improvement
Standards Presentation ECE 8873 – Data Compression and Modeling
The JPEG Standard.
Fundamentals of Video Compression
Presentation transcript:

Briefly introduction to image/ video coding standard and FGS for MPEG-4 卓傳育

Video Compression Standards ITU-T –International Telecommunication Union — Telecommunication Standardization (ITU-T) MPEG –Moving Picture Experts Group

International Telecommunication Union — Telecommunication Standardization (ITU-T) CCITT H.261 –ITU-T Study Group 15 –Videophone and video conferencing – : p x 64 kbps (p = 1 … 30) ITU-T H.263 –PSTN and mobil network: 10 to 24 kbps –1994: H.263, H.263+ … ITU-T H.26l –Merging to JVT in MPEG-4 Part 10

MPEG: Moving Picture Experts Group Coding of Moving Video and Audio MPEG-1: CD-I, for Digital Storage, … MPEG-2: … + TV, HDTV, for Broadcast – 1994 MPEG-3: HDTV -> merged into MPEG-2 MPEG-4: Coding of Audiovisual Objects-V.1:1998; V.2:1999 Extensions ongoing MPEG-7: MM Description Interface – Fall 2001 ‘ Describing ’ audiovisual material MPEG-21: Digital Multimedia Framewrok – 1 st parts early 2002 ‘ The Big Picture and The Glue ’

Block-Based Coding Why divide to blocks? Image->Blocks

H.261 Video Formats Video Forma t Luminance (Y)Chrominance(Cb, Cr) pixels/lin e lines/fram e pixels/linelines/fram e CIF QCIF Y pixel Cb, Cr pixel Block boundary

Arrangement of H QCIF CIF

Arrangements of data structure in H QCIF picture GOB (Group Of Block) Y1Y2 Y3Y4 UV MB (Macro Block)

Transform coding Encoder Decoder TQ Entropy coding Entropy coding Q -1 T -1 Image block Transform Coefficients Zigzag Scan (2D->1D) Bitstream Inverse Zigzag Scan (1D->2D) Reconstructed Transform Coefficients Reconstructed Image block

Transform (0,1) (1,0) (-1,1)(1,1) (0.2,1.8) = 0.2(1,0)+1.8(0,1) = 1(1,1)+0.8(-1,1)

Basis of Transform Basis vectors{v 1,v 2, …,v n } Orthogonal : (v i ) · (v j ) = 0 if i!=j Normalized : (v i ) · (v i ) = 1 Orthonormal : orthogonal and normalized –eg. orthonormal : {(0,1),(1,0)} Orthogonal : {(1,1),(-1,1)}

Why DCT is used for image compressing KLT(Karhunen-Loeve transform): –Statistically optimal transform: minimal MSE for any specific bandwidth reduction –KLT depends on the type of signal statistics –No fast algorithm DCT approaches KLT for highly correlated signals: –sample values typically vary slowly from point to point across an image =>Highly correlated signals –Fast algorithm(but not optimal)

DCT-basis

DCT :Discrete Cosine Transform Frequency DomainSpatial Domain [8,8,8,8,8,8,8,8] [8,8,8,8,8,8,8,9] [8,8,10,9,7,8,8,9] [8,90,-100,3,4,-10,2,80] DCT [44,0,0,0,0,0,0,0] [44,-2,0,-2,0,-2,0,-2] [46,-2,-2,-4,-2,2,0,-2] [48,-56,146,6,74,-148,-158,-136]

DCT Example of DCT

Quantization 目的:提高壓縮倍率 缺點:還原後的值會有誤差 原則:希望還原後的值,與原值差距較小 再經過較佳的 IQ 再直接乘以 3 ( 一般的 IQ) 經過 Q( 整除以 3) 原值

/16 = -26 Example of JPEG Coding(Encoder)

Example of JPEG Coding(Encoder)

Zigzag Scan 2D->1D DC term AC term BACK

–3 1 –3 2 –6 2 –4 1 – – –1 –1 EOB 2D->1D Example of JPEG Coding(Encoder) Transform coding(DCT) Quantization Zigzag Scan Zigzag Scan Entropy Coding (bit stream)

Entropy Coding (Variable-Length Coding) Huffman coding Run-length coding Arithmetic coding

Huffman Coding 設法讓 ” 出現次數最多 ” 的字 (word) ,使用 最短的代碼 (code) Variable- Length Code Fixed- Length Code 1/24 1/63/4 出現機率 ‘D’‘C’‘B’‘A’ 範例 1*(3/4)+2*(1/6)+3*(1/24)+3 *(1/24) = *(3/4)+2*(1/6)+2*(1/24)+2 *(1/24) = 2 平均長度

DPCM : Differential PCM 若連續出現重複字 (word) 或相近字的機率 很高,則 coding ” 差值 ” 會比個別 coding 每 個字效果好 例如 ‘ AAFFFFFCCC ’ –PCM => ’ 65,65,70,70,70,70,70,67,67,67 ’ or ‘ 0,0,5,5,5,5,5,2,2,2 ’ –DPCM => ’ 0,0,5,0,0,0,0,-3,0,0 ’

Run-Length Coding – EOB ^^^^^^^ ^ ^^^ (3,1) (0,6) (1,3) s s s s s s

Video Compression Encoder For Still Image TQ Entropy coding Image block Transform Coefficients Zigzag Scan (2D->1D) Bitstream Encoder For Video Sequence Q -1 T -1 Reconstructed Transform Coefficients Reconstructed Image block MC -

H.261 Intra frame – 傳整個 frame 的 information Inter frame – 會 reference 上一張 frame 傳 motion vector 傳差值

H.261 Coder DCTQ Inverse DCT Motion Compensation Loop Filter Video in Inverse Q

Motion Estimation (32,16) (-10,4) (22,20) Referenced frame Current frame Macro block 16*16 31*31

Full-search algorithm Current original frame Current referenced frame Maximum check : 31*31=961

3-step search algorithm Current original frame Current referenced frame 距離 8->4->2->1 maximum check : =33

NTSS(new 3-step search) algorithm

FSS(4-step search) algorithm

BBGDS

Overview of Fine Granularity Scalability in MPEG-4 Video Standard Weiping Li, Fellow, IEEE

Illustration of video coding performance

Multi-layer Coding

SNR scalability decoder defined in MPEG-2

Layered scalable coding Tech. Temporal scalability

Layered scalable coding Tech. Spatial scalability

BIT-PLANE CODING OF THE DCT COEFFICIENTS

FGS USING BIT-PLANE CODING OF DCT COEFFICIENTS Overall Coding Structure of FGS Some Details of FGS Coding Profile Definitions in the Amendment of MPEG-4

Overall Coding Structure of FGS FGS encoder structure

Overall Coding Structure of FGS FGS decoder structure

Some Details of FGS Coding 1)Different Numbers of Bit-Planes for Individual Color Components 2)Variable-Length Codes 3)Decoding Truncated Bitstreams

Different Numbers of Bit- Planes for Individual Color Components

Variable-Length Codes Statistics of the (RUN, EOP) symbols in the four VLC tables

Coding patterns for syntax element fgs_cbp

Decoding Truncated Bitstreams Decoding of the truncated bitstream is not standardized in MPEG-4. One possible method –To look ahead 32 bits at every byte-aligned position in the bitstream. –If the 32 bits are not fgs vop start code, the first 8 bits of the 32 bits are information bits of the FGS frame to be decoded. The decoder slides the bitstream pointer by one byte and looks ahead another 32 bits to check for fgs vop start code.