Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.

Slides:



Advertisements
Similar presentations
Chapter 9 Objectives Calculate the torque created by a force.
Advertisements

Torque Torque is defined as the tendency to produce a change in rotational motion.
Net Force.
Section 7.3 Torque © 2015 Pearson Education, Inc..
Rotational Equilibrium and Dynamics
Chapter 9 Rotational Dynamics.
Ch 9. Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Chapter 9 Torque.
Physics Montwood High School R. Casao
Foundations of Physics
A ladder with length L weighing 400 N rests against a vertical frictionless wall as shown below. The center of gravity of the ladder is at the center of.
Force vs. Torque Forces cause accelerations
Rotational Equilibrium and Rotational Dynamics
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Chapter 9 – Rotational Dynamics
Chapter 9: Torque and Rotation
Rotational Equilibrium and Rotational Dynamics
Chapter 9 Rotational Dynamics.
 orque  orque  orque  orque  orque  orque  orque  orque  orque Chapter 10 Rotational Motion 10-4 Torque 10-5 Rotational Dynamics; Torque and Rotational.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Torque and Rotational Equilibrium
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Physics 106: Mechanics Lecture 02
Forces and The Laws of Motion
ROTATIONAL MOTION.
\Rotational Motion. Rotational Inertia and Newton’s Second Law  In linear motion, net force and mass determine the acceleration of an object.  For rotational.
Chapter 8: Torque and Angular Momentum
Chapter 9 Torque.
Chapter 9: Rotational Dynamics
Chapter 8 Torque and Rotation  8.2 Torque and Stability  6.5 Center of Mass  8.3 Rotational Inertia Dorsey, Adapted from CPO Science DE Physics.
PARALLEL FORCES Forces that act in the same or opposite directions at different points on an object.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Arrows are used to represent forces. The length of.
Chapter 8 Rotational Motion.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Chapter 8 Rotational Motion.
Motion and Forces in 2 and 3 Dimensions Torque and Rotation.
Physics 111: Mechanics Lecture 4
Dynamics: Newton’s Laws of Motion
Dynamics: Newton’s Laws of Motion
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
ROTATIONAL MOTION. What can force applied on an object do? Enduring Understanding 3.F: A force exerted on an object can cause a torque on that object.
Physics CHAPTER 8 ROTATIONAL MOTION. The Radian  The radian is a unit of angular measure  The radian can be defined as the arc length s along a circle.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Chapter 9 Rotational Dynamics.
Chapter 3 Newton’s 1st Law of Motion Inertia. Net Forces cause changes in motion.
Chapter 8 Rotational Equilibrium and Rotational Dynamics
1 Physics: Chapter 4 Forces & the Laws of Motion Topics:4-1 Changes in Motion 4-2 Newton’s First Law 4-3 Newton’s Second & Third Laws 4-4 Everyday Forces.
Monday, Apr. 14, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #21 Monday, Apr. 14, 2008 Dr. Jaehoon Yu Rolling Motion.
Newton’s third law of motion 1 Force 2
Introduction to Torque
Rotational Dynamics Chapter 9.
9.1 Torque 1.
Objectives Calculate the torque created by a force.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Introduction to Torque
Torque and Rotation Physics.
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding.
Net Force.
Presentation transcript:

Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding the power switch, on the left, up. Next, store your student number in the clicker. You only have to do this once. Press the * button to enter the setup menu. Press the up arrow button to get to ID Press the big green arrow key Press the T button, then the up arrow to get a U Enter the rest of your BU ID. Press the big green arrow key.

Torque Forces can produce torques. The magnitude of a torque depends on the force, the direction of the force, and where the force is applied. The magnitude of the torque is. is measured from the axis of rotation to the line of the force, and is the angle between and. To find the direction of a torque from a force, pin the object at the axis of rotation and push on it with the force. We can say that the torque from that force is whichever direction the object spins (counterclockwise, in the picture above). Torque is zero when and are along the same line. Torque is maximum when and are perpendicular.

Three ways to find torque Find the torque applied by the string on the rod. 1. Just apply the equation

Three ways to find torque Find the torque applied by the string on the rod. 2. Break the force into components first, then use. The force component along the rod gives no torque.

Three ways to find torque Find the torque applied by the string on the rod. 3. Use the lever-arm method: measure r along the line that meets the line of the force at a 90° angle.

Worksheet, part 2 Try drawing a free-body diagram for a horizontal rod that is hinged at one end. The rod is held horizontal by an upward force applied by a spring scale ¼ of the way along the rod. How does the weight of the rod compare to the reading on the spring scale? An equilibrium example This is a model of our lower arm, with the elbow being the hinge.

Summing the torques To solve for the unknown force, we can’t use forces, because we get one equation with two unknowns (the force of gravity and the hinge force). Use torques instead. We can take torques about any axis we want, but if we take torques about an axis through the hinge we eliminate the unknown hinge force. Define clockwise as positive, and say the rod has a length L.

Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Moving the spring scale What, if anything, happens when the spring scale is moved farther away from the hinge? To maintain equilibrium: 1. The magnitude of the spring-scale force increases. 2. The magnitude of the spring-scale force decreases. 3. The magnitude of the downward hinge force increases. 4. The magnitude of the downward hinge force decreases. 5. Both 1 and 3 6. Both 1 and 4 7. Both 2 and 3 8. Both 2 and 4 9. None of the above.

Red and blue rods Two rods of the same shape are held at their centers and rotated back and forth. The red one is much easier to rotate than the blue one. What is the best possible explanation for this? 1. The red one has more mass. 2. The blue one has more mass. 3. The red one has its mass concentrated more toward the center; the blue one has its mass concentrated more toward the ends. 4. The blue one has its mass concentrated more toward the center; the red one has its mass concentrated more toward the ends. 5. Either 1 or 3 6. Either 1 or 4 7. Either 2 or 3 8. Either 2 or 4 9. Due to the nature of light, red objects are just inherently easier to spin than blue objects are.

Newton’s First Law for Rotation An object at rest tends to remain at rest, and an object that is spinning tends to spin with a constant angular velocity, unless it is acted on by a nonzero net torque or there is a change in the way the object's mass is distributed. The net torque is the vector sum of all the torques acting on an object. The tendency of an object to maintain its state of motion is known as inertia. For straight-line motion mass is the measure of inertia, but mass by itself is not enough to define rotational inertia.

Rotational Inertia How hard it is to get something to spin, or to change an object's rate of spin, depends on the mass, and on how the mass is distributed relative to the axis of rotation. Rotational inertia, or moment of inertia, accounts for all these factors. The moment of inertia, I, is the rotational equivalent of mass. For an object like a ball on a string, where all the mass is the same distance away from the axis of rotation: If the mass is distributed at different distances from the rotation axis, the moment of inertia can be hard to calculate. It's much easier to look up expressions for I from the table on page 291 in the book (page in Essential Physics).

A table of rotational inertias

Whiteboard