Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.

Slides:



Advertisements
Similar presentations
Martin zur Nedden, HU Berlin 1 WS 2007/08: Physik am LHC 6. SUper SYmmetry Beyond the Standard Model Introduction into SUper SYmmetry Minimal Super Symmetric.
Advertisements

Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Gravitino Dark Matter & R-Parity Violation M. Lola MEXT-CT (work with P. Osland and A. Raklev) Prospects for the detection of Dark Matter Spain,
Susy - Oct 2004Aldo F. Saavedra (LBL) Basic Supersymmetry Aldo F. Saavedra LBL.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Outlook: Higgs, SUSY, flavor Ken-ichi Hikasa (Tohoku U.) Fourth Workshop, Origin of Mass and SUSY March 8, 2006, Epochal Tsukuba.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Neutralino Dark Matter in Light Higgs Boson Scenario Masaki Asano (ICRR, University of Tokyo) Collaborator S. Matsumoto (Toyama Univ.) M. Senami (Kyoto.
Going after the Dark at Colliders David Berge (CERN)
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Sub Z Supersymmetry M.J. Ramsey-Musolf Precision Electroweak Studies in Nuclear Physics.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Flavor Physics from R-parity Violation Eung Jin Chun Korea Institute for Advanced Study ICFP2005, NCU, Chung-li, Oct.3-8.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
Looking for SUSY Dark Matter with ATLAS The Story of a Lonely Lepton Nadia Davidson Supervisor: Elisabetta Barberio.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
REHEATING TEMPERATURE IN GAUGE MEDIATION MODELS AND COMPRESSED PARTICLE SPECTRUM Olechowski, SP, Turzynski, Wells (ABOUT RECONCILING SUPERSYMMETRIC DARK.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
Lausanne 02/03/2001 A.Jacholkowska1 Supersymmetric Higgs(es) in LHC(b) Agnieszka Jacholkowska 2 nd Generator Workshop Lausanne 02/03/2001.
Lepton Photon Symposium LP01 Searches for New Particles Gail G. Hanson Indiana University.
New Physics Part ~ Status Report ~ ~ Little Higgs Model (LHT) ~ 1. Sample Points: already chosen. 2. Model file for MadGraph: will be finished soon. (The.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
A.F.Kord Sabzevar Tarbiat Moallem University (Iran) September 2011.
ROY, D. (2011). Why Large Hadron Collider?. Pramana: Journal Of Physics, 76(5), doi: /s
Center for theoretical Physics at BUE
STANDARD MODEL. Theoretical Constraints on Higgs Mass Large M h → large self-coupling → blow up at low-energy scale Λ due to renormalization Small: renormalization.
Phenomenological aspects of Generation Twisted Supersymmetric Unification Aug. 30, 2006, APCTP Kentaro Kojima Department of Physics, Kyushu University.
Flavour and CP Violation in Supersymmetric Models John Ellis Theory Division, LHCb, Jan. 27 th, 2009.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
H 4 The SM and Beyond Inconsistency at high energies due to Landau pole Inconsistency at high energies due to Landau pole Large number of free.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
ATLAS Dan Tovey 1 Measurement of the LSP Mass Dan Tovey University of Sheffield On Behalf of the ATLAS Collaboration.
Ohio State DUSEL Theory Workshop Stuart Raby Underground Detectors Investigating Grand Unification Brookhaven National Lab October 16, 2008.
Flavor induced EDMs with tanbeta enhanced corrections Minoru Nagai (ICRR, Univ. of Tokyo) Aug. 4, 2007 Summer Institute 2007 In collaborated with: J.Hisano.
Lecture 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
CONSTRAINED MSSM AND RECENT ASTROPHYSICAL DATA Alexey Gladyshev (JINR, Dubna & ITEP, Moscow) SEMINAR AT KEK THEORY GROUP November 1, 2004.
SUSY Studies with ATLAS Experiment 2006 Texas Section of the APS Joint Fall Meeting October 5-7, 2006 Arlington, Texas Nurcan Ozturk University of Texas.
Long-lived superpartners in the MSSM Alexey GLADYSHEV (JINR, Dubna / ITEP, Moscow) PROTVINO, December 25, 2008 PHYSICS OF FUNDAMENTAL INTERACTIONS PHYSICS.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
The Odd Couple: No-Scale Multiverse & LHC Dimitri V. Nanopoulos Texas A&M University Houston Advanced Research Center Academy of Athens Research in collaboration.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
WIN 05, Delphi, Greece, June 2005Filip Moortgat, CERN WIN 05 Inclusive signatures: discovery, fast but not unambiguous Exclusive final states & long term.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
Andreas Crivellin Andreas Crivellin Albert Einstein Center for Fundamental Physics - Institute for Theoretical Physics Non-decoupling effects The model.
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
Search for SUSY in Photonic and Tau Channels with the ATLAS Detector
Journées de Prospective
SUSY at LEP2 (third generation and ewinos)
LHC The Challenge Dmitri Kazakov JINR / ITEP
Search for Supersymmetry
Supersymmetric Dark Matter
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Analysis of enhanced effects in MSSM from the GUT scale
Presentation transcript:

Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous magnetic moment of muon LSP is neutral Amount of the Dark Matter Experimental limits from direct search Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous magnetic moment of muon LSP is neutral Amount of the Dark Matter Experimental limits from direct search Requirements: Allowed region in the parameter space of the MSSM

Radiative EW Symmetry Breaking For given Soft SUSY parametersHard SUSY parameter μ - problem

( Constrained MSSM ( Choice of constraints) Experimental lower limits on Higgs and superparticle masses tan β =35tan β =50 Regions excluded by Higgs experimental limits provided by LEP2

B->s γ decay rate Standard Model MSSM ~~~~ ~~ ~ ~ ~ ~~ H W ±, H ± ~~ SM: MSSM Experiment

Constrained MSSM ( Choice of constraints) Data on rare processes branching ratios tan β =35 tan β =50 Regions excluded by experimental limits (for large tanβ)

Rare Decay Bs → μ+ μ- SM: Br=3.5٠ ~ Ex: <4.5٠ Main SYSY contribution SM

Constrained MSSM ( Choice of constraints) Data on rare processes branching ratios tan β =35 tan β =50 Regions excluded by experimental limits (for large tanβ)

Anomalous magnetic moment EW 27±10

Constrained MSSM ( Choice of constraints) Muon anomalous magnetic moment Regions excluded by muon amm constraint tan β =35 tan β =50

Constrained MSSM ( Choice of constraints) This constraint is a consequence of R-parity conservation requirement The lightest supersymmetric particle (LSP) is neutral. Regions excluded by LSP constraint tan β =35tan β =50

Favoured regions of parameter space From the Higgs searches tan β >4, from a μ measurements μ >0 Pre-WMAP allowed regions in the parameter space. tan β =35tan β =50

In allowed region one fulfills all the constraints simultaneously and has the suitable amount of the dark matter Narrow allowed region enables one to predict the particle spectra and the main decay patterns Allowed regions after WMAP WMAP LSP charged HiggsEWSB tan β =50 Phenomenology essentially depends on the region of parameter space and has direct influence on the strategy of SUSY searches

SUSY Masses in MSSM Gauginos+HiggsinosSquarks and Sleptons

Mass Spectrum in CMSSM Symbol Low tan  High tan  214, 41364, , , , , , , , , , , , , , , 1046 h, H95, , 372 A, H1340, , 383 SUSY Masses in GeV Fitted SUSY Parameters Symbol Low tan  High tan  tan  m m 1/  (0) A(0)00 1/  GUT 24.8 M GUT (Sample) 95115

The Lightest Superparticle Gravity mediation stable propertysignature jets/leptons Gauge mediation stable photons/jets lepton Anomaly mediation stable lepton R-parity violation LSP is unstable  SM particles Rare decays Neutrinoless double  decay Modern limit

SUSY Dark Matter Neutralino = SUSY candidate for the cold Dark Matter Neutralino = the Lightest Superparticle (LSP) = WIMP photino zino higgsino higgsino Superparticles are created in pairs The lightest superparticle is stable