Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 2 – Chemistry and Star Formation 1.Basic chemical interactions.

Slides:



Advertisements
Similar presentations
Star Formation Why is the sunset red? The stuff between the stars
Advertisements

The Amazing Spectral Line Begin. Table of Contents A light review Introduction to spectral lines What spectral lines can tell us.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
HCN, HNC, CN et al. in dense depleted cores Malcolm Walmsley (Arcetri and Dublin) With thanks to Marco Padovani and Pierre Hily-Blant.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Andrew Walsh, James Cook University Narrated by James Green (CASS) – thanks Jimi! (Psshhh aaahhh sssss push it) The Case for High Frequency Line Observations.
AS 4002 Star Formation & Plasma Astrophysics MOLECULAR CLOUDS Giant molecular clouds – CO emission –several tens of pc across –mass range 10 5 to 3x10.
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
21 November 2002Millimetre Workshop 2002, ATNF First ATCA results at millimetre wavelengths Vincent Minier School of Physics University of New South Wales.
Radio Waves Where do they come from?. Radio waves belong to a family The electromagnetic spectrum (EM) is a continuum of waves, sometimes called electromagnetic.
General Astronomy The Interstellar Medium Credits: Much of this slideset is modified from lectures by Dr. Peter Newbury (UBC)
Considerations for Millimeter-wave Observations Amy Lovell, Agnes Scott College Fifth NAIC/NRAO Single-Dish Summer School July 2009.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
Complex organic molecules in hot corinos
Class I methanol masers in the regions of high-mass star-formation Max Voronkov Software Scientist – ASKAP In collaboration with: Caswell J.L., Ellingsen.
ISM Lecture 13 H 2 Regions II: Diffuse molecular clouds; C + => CO transition.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Nebular Astrophysics.
The Chemistry in Interstellar Clouds Eric Herbst Departments of Physics, Astronomy, and Chemistry The Ohio State University.
CO, CS or other molecules? Maria Cunningham, UNSW.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 18.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
What is Millimetre-Wave Astronomy and why is it different? Michael Burton University of New South Wales.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
John E. Hibbard North American ALMA Science Center (NAASC/NRAO) Josh Barnes Institute for Astronomy U. Hawai’i (simulating the dynamics of the…) Gas in.
HOPS – The H 2 O southern Galactic Plane Survey Image Courtesy: Cormac Purcell.
The Chemistry of Comet Hale-Bopp Wendy Hawley Journal Club April 6, 2006.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Molecular tracers in the Galaxy (and beyond…) Willem Baan 1 & Edo Loenen 1,2 1 ASTRON, 2 Kapteyn Astronomical Institute.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Supervisors: Maria Cunningham (UNSW), James Urquhart (CSIRO) Michael Burton (UNSW) Collaborators: Nadia Lo (UNSW/CSIRO), Bhaswati Mookerjea (Tata Institute)
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Determination of physical properties from molecular lines Kate Brooks Australia Telescope National Facility Mopra Induction Weekend May 2005.
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Star Formation Why is the sunset red? The stuff between the stars
Interstellar Chemical Models with Molecular Anions Eric Herbst, OSU T. Millar, M. Cordiner, C. Walsh Queen’s Univ. Belfast R. Ni Chiumin, U. Manchester.
A Survey of Large Molecules toward the Protoplanetary Nebula CRL 618 Anthony J. Remijan NASA/GSFC Friedrich Wyrowski Max-Planck-Institut fur Radioastronomie.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
The ALMA view of a Carbon Rich AGB Star: The Spectrum of IRC+10216
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling,
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
" There's life Jim....but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life" 30 th May.
Alexander V. Lapinov, G.Yu.Golubiatnikov, S.P.Belov Inst. of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia CH 3 OH sub-Doppler.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Interstellar and Circumstellar Chemistries: The Role of Neutral-Neutral Reactions.
Sternentstehung - Star Formation
Lecture 3 – High Mass Star Formation
The MALT90 survey of massive star forming regions
Signposts of massive star formation
Gas phase interstellar and circumstellar molecules
星际介质中预生物分子的化学建模研究 Chemical Modeling Studies of Interstellar Prebiotic Molecules 全冬晖 July 28th, 2018.
DETECTING MOLECULAR LINES IN THE GHz FREQUENCY RANGE
Max Voronkov Software Scientist – ASKAP 14th December 2010
The Interstellar Medium
FSU Harry Kroto 2004.
Millimeter Megamasers and AGN Feedback
Presentation transcript:

Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 2 – Chemistry and Star Formation 1.Basic chemical interactions 2.Abundances 3.Depletion and enhancement 4.Line surveys and common lines 5.Column density 6.Virial equilibrium 7.Rotation diagrams 8.Chemical clocks

Basic chemical interactions High dust column densities block optical and UV-light in dark cores:  molecules can form and survive Formation of molecules is an energy problem Possibilities: - Simultaneous collision with 3rd atom carrying away energy  unlikely at the given low densities

Basic chemical interactions Chemical reactions on earth: A + B  AB* (excited state, unstable, lifetime s) followed by AB*  AB + C + ΔE kin the collision with a third particle C within the lifetime of AB* is needed to remove excess energy, otherwise the reaction AB*  A + B will occur. Due to momentum conservation, the excess energy cannot be converted into kinetic energy.

Basic chemical interactions Chemical reactions in space: The density is so low that no particle C will come by within the lifetime of AB*, so only reactions of the type A + B  C + D or A + B  AB + hν are possible. The second reaction product obeys energy and momentum conservation laws. In space, temperatures are between 10 and 300 K, so most endothermic reactions cannot occur since not enough energy is available. In space, we have a low-energy, two-body-in two-body-out chemistry.

Basic chemical interactions High dust column densities block optical and UV-light in dark cores:  molecules can form and survive Formation of molecules is an energy problem Possibilities: - Simultaneous collision with 3rd atom carrying away energy  unlikely at the given low densities - Ion-molecule or ion-atom reactions can solve energy problem - Neutral-neutral reactions on dust grain surfaces (catalytic) important

Basic chemical interactions - Neutral-neutral reactions on dust grain surfaces (catalytic) important Dust grain H H H H

Abundances The Chemical Elements Z ElementParts per million 1 Hydrogen739,000 2 Helium 240,000 8 Oxygen 10,400 6 Carbon 4, Neon 1, Iron 1,090 7 Nitrogen Silicon Magnesium Sulfur 440

Abundances Molecule/Ion/Radical Relative Abundances Molecule/Ion/RadicalRelative Abundance Reference H2H2 1 CO2 × 10 –5 Dickman & Clemens CO1 × 10 –6 Irvine et al C 18 O1 × 10 –7 Frerking et al CH 3 OH2 × 10 –6 Bisschop et al CH 3 CN1 × 10 –7 Bisschop et al CS4 × 10 –8 Garay et al HCO + 4 × 10 –8 Hogerheijde et al HCCCN5 × 10 –8 Sorochenko et al NH 3 1 × 10 –8 Johnstone et al C 34 S4 × 10 –10 Wilson & Rood 1994 N2H+N2H+ 2 × 10 –10 Walsh et al SiO5 × 10 –11 Garay et al. 2010

Abundances “CS abundance is 3 × on average, ranging from (4-8) × in the cold source GL 7009S to (1-2) × in the two hot-core-type sources.” van der Tak et al In the coldest and densest regions, species suffer “depletion” (decrease in abundance) whereby they freeze-out onto dust grains Shocks can increase the abundance of some species

Depletion in B mm Dust Continuum C 18 O N 2 H + Optical Near-Infrared

Depletion Common depleting molecules: ALL of them Some suffer strong depletion (eg. O-bearing and S-bearing species like CO, HCO + and CS) Some are relatively robust against depletion (eg. N-bearing species and H-only species like NH 3, N 2 H + and H 2 D + )

Shock Enhancement Walsh et al Red & Blue = HCO + (1-0) Greyscale = N 2 H + (1-0) + = dust continuum cores

Shock Enhancement Species affected: CO, HCO +, CS, CH 3 OH, HCN, HNC, SiO... N 2 H + and NH 3 tend to “avoid” shocked regions Due to reactions with CO and HCO + that quickly react with N 2 H + and NH 3 to form CH 3 CN, CH 3 OH and similar byproducts  both N 2 H + and NH 3 are reliable tracers of quiescent gas

Line Surveys and Common Lines Line Survey: Observe as large a range of frequencies as possible Usually done in the millimetre or sub-millimetre Show the range of species that are detectable

Line Surveys and Common Lines

The Mopra Radiotelescope

Recent Mopra Upgrades On-the-fly mapping to quickly scan the sky New 3mm receiver covers GHz New 12mm receiver covers 16-28GHz The new spectrometer (MOPS) has instantaneous 8GHz bandwidth with up to 32,000 channels (2 polarisations) 0.25MHz per channel in broadband mode

Mopra Radiotelescope The new Mopra spectrometer (MOPS) Instantaneous 8GHz bandwidth split between 4 IFs of 2.2GHz width each IF0 IF1 IF2 IF3 8.4GHz 2.2GHz

G Glimpse 3-colour mid-infrared image 4.5, 5.8 and 8.0 microns

Line surveys of many sources

Orion G G Frequency (GHz) Frequency (GHz) Frequency (GHz) Frequency (GHz)

83 Frequency (GHz)

83 Frequency (GHz)

83 Frequency (GHz) Orion G G

83 Frequency (GHz)

83 Frequency (GHz) Orion G G

83 Frequency (GHz) Orion G G

83 Frequency (GHz) Orion G G CH 3 OCH 3 (E l /k = 1059K) CH 3 OH (E l /k = 1443K)

Molecules in Space AlCl AlF AlNC FeO HCl HF KCl MgCN MgNC NaCl NaCN PN CP SiC c-SiC 2 SiC 2 SiC 3 SiC 4 SiCN SiH SiH 4 SiN SiNC SiO SiS C 2 S C 3 S CH 3 SH CS H 2 CS H 2 S H 2 S + HCS + HNCS HS HS + OCS S 2 NS SO SO + SO 2 C 3 N C 5 N CH 2 CHCN CH 2 CN CH 2 NH CH 3 C 3 N CH 3 CH 2 CN CH 3 CN CH 3 NC CH 3 NH 2 CN CN + H 2 C 3 N + H 2 CN HCN HNC HCCN HC 3 N HC 4 N HC 5 N HC 7 N HC 9 N HC 11 N HCCNC HCNH + CO CO + CO 2 CO 2 + H 2 CCO H 2 CO H 2 O H 2 O + H 3 CO + H 3 O + HC 2 CHO HCO HCO + HCOOCH 3 HCOOH HOC + HOCH 2 CH 2 OH HOCO + OH OH + C 2 C 2 H C 2 H 2 C 2 H 4 C 3 c-C 3 H l-C 3 H c-C 3 H 2 C 4 H C 5 C 5 H C 6 H C 6 H 2 C 6 H 6 C 7 H C 8 H CH CH + CH 2 CH 3 CH 3 CCH CH 3 C 4 H CH 3 CH 4 H 2 CCC H 2 CCCC HCCCCH HCCCCCCH H2H3+H2H3+ HNCCC HNCO HNCO - HNO N 2 H + N 2 + N 2 O NH NH 2 NH 3 NH 4 + NH 2 CN NH 2 CHO NO c-C 2 H 4 O CH 3 CH 2 OH C 2 O C 3 H 4 O C 3 O CH 2 OHCHO CH 3 CH 2 CHO CH 3 CHO CH 3 COCH 3 CH 3 COOH CH 3 OCH 3 CH 3 OH

Molecules in Space AlCl AlF AlNC FeO HCl HF KCl MgCN MgNC NaCl NaCN PN CP SiC c-SiC 2 SiC 2 SiC 3 SiC 4 SiCN SiH SiH 4 SiN SiNC SiO SiS C 2 S C 3 S CH 3 SH CS H 2 CS H 2 S H 2 S + HCS + HNCS HS HS + OCS S 2 NS SO SO + SO 2 C 3 N C 5 N CH 2 CHCN CH 2 CN CH 2 NH CH 3 C 3 N CH 3 CH 2 CN CH 3 CN CH 3 NC CH 3 NH 2 CN CN + H 2 C 3 N + H 2 CN HCN HNC HCCN HC 3 N HC 4 N HC 5 N HC 7 N HC 9 N HC 11 N HCCNC HCNH + CO CO + CO 2 CO 2 + H 2 CCO H 2 CO H 2 O H 2 O + H 3 CO + H 3 O + HC 2 CHO HCO HCO + HCOOCH 3 HCOOH HOC + HOCH 2 CH 2 OH HOCO + OH OH + C 2 C 2 H C 2 H 2 C 2 H 4 C 3 c-C 3 H l-C 3 H c-C 3 H 2 C 4 H C 5 C 5 H C 6 H C 6 H 2 C 6 H 6 C 7 H C 8 H CH CH + CH 2 CH 3 CH 3 CCH CH 3 C 4 H CH 3 CH 4 H 2 CCC H 2 CCCC HCCCCH HCCCCCCH H2H3+H2H3+ HNCCC HNCO HNCO - HNO N 2 H + N 2 + N 2 O NH NH 2 NH 3 NH 4 + NH 2 CN NH 2 CHO NO c-C 2 H 4 O CH 3 CH 2 OH C 2 O C 3 H 4 O C 3 O CH 2 OHCHO CH 3 CH 2 CHO CH 3 CHO CH 3 COCH 3 CH 3 COOH CH 3 OCH 3 CH 3 OH

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN HI - atomic hydrogen Frequency (GHz) Ubiquitous low density gas tracer Critical density ~ 10 1 cm -3 Strong enough to be easily detected in other galaxies – traces outer edges

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN GASS (Galactic All Sky Survey)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN OH - Hydroxyl Radical Maser and thermal emission Found towards star forming regions, Evolved stars (post-AGB), SNRs, Extragalactic sources Frequency (GHz)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN NH 3 - Ammonia Maser and thermal emission Ubiquitous medium to high density Gas tracer > 10 3 cm -3 Closely traces density structure Frequency (GHz) etc

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN Optical Depth: T main (1 - e -τ ) T sat (1 - e -aτ ) a = 0.28 (inner) a = 0.22 (outer)  τ = 0.5 = Main line Inner satellite Outer satellite NH 3 (1,1) spectrum

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN H 2 O - Water Maser only Most common maser known Traces outflows in star forming regions Also found in other astrophysical objects (eg. evolved stars, extragalactic megamasers) Frequency (GHz)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN HCN - Hydrogen Cyanide Frequency (GHz) Ubiquitous high density gas tracer Hyperfine structure Bright enough to be seen in the centres of other galaxies

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN CO - Carbon Monoxide Frequency (GHz) CO C 18 O C 17 O Ubiquitous low density gas tracer Critical density ~10 2 cm -3 Strongly influenced by outflows in our Galaxy Found in the cores of galaxies Can be traced right across the universe

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN CO - Carbon Monoxide (Dame, Hartmann & Thaddeus, 2000) Second most abundant molecule X ~  H 2 CO (1-0) is the brightest thermal line

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN HCO + - Oxomethylium Frequency (GHz) H 13 CO + HC 18 O + Occurs in similar regions to CO Higher critical density ~2  10 5 cm -3 Like CO enhanced in outflows and suffers from freeze-out onto dust grains in cold, dense regions

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN N 2 H + - Diazenylium Frequency (GHz) Reliable high density gas tracer Hyperfine structure gives optical depth Critical density ~ 2  10 5 cm -3 Does not show up in outflows Less prone to freeze-out/depletion

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN CH 3 OH - Methanol Frequency (GHz) etc Both thermal and maser MANY spectral lines (asymmetric rotor)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN Thermal Methanol Lines in 12mm and 3mm bands → rotation diagram 12mm ladder: CH 3 OH (3 2,1 -3 1,2 ) E Energy = 35K CH 3 OH (4 2,2 -4 1,3 ) E Energy = 44K CH 3 OH (5 2,3 -5 1,4 ) E Energy = 56K CH 3 OH (6 2,4 -6 1,5 ) E Energy = 70K … CH 3 OH (13 2, ,12 ) E Energy = 232K

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN Methanol Masers Class I masers collisionally excited Class II masers radiatively excited Class I usually found offset from star formation sites Class II closely associated with sites of high-mass star formation (and nothing else)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN CH 3 CN – Methyl Cyanide Frequency (GHz) Useful rotational ladders (close together) Velocity (km/s) Rotation diagram using the J=(5-4) & J=(6-5) transitions. CH 3 CN Spectrum (Purcell et al. 2006, MNRAS, 367, 553)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN SiO – Silicon Monoxide Frequency (GHz) Both maser and thermal emission Maser emission in vibrationally Excited states only seen towards 2 or 3 sources. But results very productive in Orion.

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN SiO – Silicon Monoxide Frequency (GHz) Both maser and thermal emission Maser emission in vibrationally Excited states only seen towards 2 or 3 sources. But results very productive in Orion. Matthews et al. 2007

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN SiO – Silicon Monoxide Frequency (GHz) Both maser and thermal emission Maser emission in vibrationally Excited states only seen towards 2 or 3 sources. But results very productive in Orion. Thermal SiO closely associated with Outflows in star forming regions

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN SiO – Silicon Monoxide IRAS Cesaroni et al IRAS

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN CS – Carbon Sulfide Frequency (GHz) Ubiquitous tracer of high density gas Critical density ~ 2  10 6 cm -3 Suffers from freeze-out onto dust grains (depletion)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN HCCCN - Cyanoacetylene Frequency (GHz) Hot core molecule (tracer of high mass star formation)

Some of the more important lines H OH NH 3 H 2 O HCN CO HCO + N 2 H + CH 3 OH CH 3 CN SiO CS HCCCN HCCCN - Cyanoacetylene Frequency (GHz) Hot core molecule (tracer of high mass star formation) HOPS results HCCCN NH 3

Calculating Column Densities

N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( )

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) N u = Column density in upper energy level

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) k = Boltzmann’s constant = 1.38  m 2 kg s -2 K -1

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) = frequency of line transition (eg GHz for CO(1-0))

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) A ul = Einstein A coefficient for transition = 16   o hc 3 |2||2|

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) A ul = Einstein A coefficient for transition = 16  3 3  o = permittivity of free space =  m -3 kg -1 s 4 A 2 3  o hc 3 |2||2|

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) A ul = Einstein A coefficient for transition = 16  3 3  = magnetic dipole moment (eg, for N 2 H + = 3  o hc 3 |2||2|

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) A ul = Einstein A coefficient for transition = 16  3 3  = magnetic dipole moment (eg, for N 2 H + = 3.4 Debye 3  o hc 3 |2||2|

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) A ul = Einstein A coefficient for transition = 16  3 3  = magnetic dipole moment (eg, for N 2 H + = 3.4 Debye = 1.13  C m) 3  o hc 3 |2||2|

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) Integrated Intensity (area under the curve)

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( )  = optical depth

Optical Depth Optically thick Optically thin → Temperature probe → Column density probe

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) N = N u gugu e E u /kT Q(T ex )

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) N = N u gugu e E u /kT Q(T ex ) g u = upper energy level degeneracy = 2J+1

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) N = N u gugu e E u /kT Q(T ex ) E u = upper energy level (K)

Calculating Column Densities N u = 8 k  2 A ul h c 3 ∫ -∞ ∞ T b dv  1 - e -  ( ) N = N u gugu e E u /kT Q(T ex ) Q(T ex ) = partition function (a sum over all energy states) at a given temperature, T ex

Calculating Column Densities Values for ,, E u and Q(T ex ) can be found at “CDMS” ( Note that CDMS quotes E l, rather than E u and units are in cm -1, rather than K. (1K = 100 hc/k cm -1 )

Applying Column Densities Walsh et al. 2007, ApJ, 655, 958

Applying Column Densities Given column density of N 2 H + clump in NGC1333: Assume LTE Assume size of clump Assume relative abundance of N 2 H + to H 2 (~1.8 x ) Assume mean molecular weight 2.3 Mass of clump

Applying Column Densities Compare to Virial Mass: M VIR = 210  v 2 r M ⊙ km/s pc Assumes uniform density profile If density falls off as r -2, 210 changes to 126.

Applying Column Densities

N = N u gugu e E u /kT Q(T ex )

Rotation Diagrams N u N E u g u Q(T) kT ex ( ) ln = ln ( ) Plot ln (N u /g u ) vs. E u /k Slope = 1/T Y-intercept = ln (N/Q(T))

Rotation Diagrams Ammonia in a high mass star forming region (1,1) (2,2) (4,4) (5,5) (Longmore et al. 2007, MNRAS, 379, 535)

Use chemical rate equations, together with an initial model of the physical conditions Abundance Temperature Density Structure Chemical Clocks

T = 100K N H 2 = 1.8 x 10 4 cm -3 T = 200K N H 2 = 1.8 x 10 4 cm -3 T = 100K N H 2 = 8 x 10 4 cm -3 T = 200K N H 2 = 8 x 10 4 cm -3

Summary Lecture 2 – Chemistry and Star Formation 1.Basic chemical interactions 2.Abundances 3.Depletion and enhancement 4.Line surveys and common lines 5.Column density 6.Virial equilibrium 7.Rotation diagrams 8.Chemical clocks