Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
EECS 4101/5101 Prof. Andy Mirzaian. References: [M. de Berge et al ’00] chapter 3 [Preparata-Shamos’85] chapter 6 [O’Rourke’98] chapter 1 [M. de Berge.
Computational Geometry, WS 2007/08 Lecture 17 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften.
2/3/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Triangulations and Guarding Art Galleries II Carola Wenk.
UNC Chapel Hill M. C. Lin Polygon Triangulation Chapter 3 of the Textbook Driving Applications –Guarding an Art Gallery –3D Morphing.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Triangulation (Naive)
9/12/06CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2006 Triangulations and Guarding Art Galleries II Carola Wenk.
Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
The Maths of Pylons, Art Galleries and Prisons Under the Spotlight John D. Barrow.
Feb Polygon Triangulation Shmuel Wimer Bar Ilan Univ., School of Engineering.
Face Guards for Art Galleries Diane Souvaine, Raoul Veroy, and Andrew Winslow Tufts University.
G UARDING A RT G ALLERY By: Venkatsai Bhimanthini Fall’2014.
Applied Combinatorics, 4th Ed. Alan Tucker
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Klee’s Measure Problem Computational Geometry, WS 2007/08 Group Work Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
The Half-Edge Data Structure
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition.
The Lower Envelope: The Pointwise Minimum of a Set of Functions Computational Geometry, WS 2006/07 Lecture 4 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Special Cases of the Hidden Line Elimination Problem Computational Geometry, WS 2007/08 Lecture 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Persistent Data Structures Computational Geometry, WS 2007/08 Lecture 12 Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Geometric Data Structures Computational Geometry, WS 2007/08 Lecture 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Copyright 2002 Joseph O’Rourke. DIMACS Connect Institute Keynote Address, May 4, Unsolved Problems in Visibility Joseph O’Rourke Smith College 
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Art Gallery Problems Prof. Silvia Fernández. Star-shaped Polygons A polygon is called star-shaped if there is a point P in its interior such that the.
Closest Pair of Points Computational Geometry, WS 2006/07 Lecture 9, Part II Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Polygon Triangulation Computational Geometry, WS 2007/08 Lecture 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Polygon Triangulation Computational Geometry, WS 2006/07 Lecture 8, Part 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Caracterização e Vigilância de algumas Subclasses de Polígonos Ortogonais Ana Mafalda Martins Universidade Católica Portuguesa CEOC Encontro Anual CEOC.
The Art Gallery Problem Presentation for MA 341 Joseph Dewees December 1, 1999.
The Art Gallery Problem
Brute-Force Triangulation
The Art Gallery Problem
1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Christian Schindelhauer Search Algorithms Winter Semester 2004/ Jan.
9/7/06CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2006 Triangulations and Guarding Art Galleries Carola Wenk.
CENG 789 – Digital Geometry Processing 02- Polygons and Triangulations Asst. Prof. Yusuf Sahillioğlu Computer Eng. Dept,, Turkey.
Art gallery theorems for guarded guards T.S. Michael, Val Pinciub Computational Geometry 26 (2003) 247–258.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Computational Geometry Polygon Triangulation and The Art Gallery Problem Joachim Gudmundsson NICTA, Sydney.
Some Results on Hidden Edge Guards Sarah Cannon Diane Souvaine Andrew Winslow.
1/29/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Triangulations and Guarding Art Galleries Carola Wenk.
The Art Gallery Problem Bart Verzijlenberg. Agenda Problem Problem Chvátal’s Classical Art Gallery Theorem Chvátal’s Classical Art Gallery Theorem Proof.
Open Guard Edges and Edge Guards in Simple Polygons Csaba Tóth, Godfried Toussaint, and Andrew Winslow.
Contest Algorithms January 2016 Triangulation & the Art Gallery Problem Contest Algorithms1.
9/8/10CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2010 Triangulations and Guarding Art Galleries Carola Wenk.
Polygon Triangulation
CMPS 3130/6130 Computational Geometry Spring 2017
3. Polygon Triangulation
CENG 789 – Digital Geometry Processing 02- Polygons and Triangulations
Tucker, Applied Combinatorics, Sec 2.4
The Art Gallery Problem
The Art Gallery Problem
Polygon Triangulation
Presentation transcript:

Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann2 Agenda Motivation: Guarding art galleries Art gallery theorem for simple polygons Partitioning of polygons into monotone pieces Triangulation of y-monotone polygons

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann3 Guarding art galleries Problem Definition Imagine an art gallery room whose floor plan can be modeled by a polygon of n vertices. Victor Klee asked (1973): How many stationary guards are needed to guard the room?

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann4 Guarding art galleries The gallery is represented by a simple polygon A guard is represented by a point within the polygon Guards have a viewport of 360°, and of course cannot see through a wall A polygon is completely guarded, if every point within the polygon is guarded by at least one of the watchmen Visibility polygon: The visibility polygon of a polygon P is defined by the set of all points that are visible from a base point p. Demo

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann5 Guarding art galleries We are NOT interested in the minimum number of guards for a specific polygon, but rather want to determine the number of guards that suffice for an arbitrary polygon with n vertices. Even if two polygons have the same number of vertices, one may be easier to guard than the other.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann6 Guarding art galleries If the polygon is complex, it is not obvious to see how many gurads are needed. Idea: Divide the polygon into pieces that are easy to guard

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann7 Guarding a triangulated polygon

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann8 Triangulation of simple polygons Does every simple polygon admit a triangulation? If yes, what is the number of triangles? Does any triangulation of a polygon P lead to the same number of triangles?

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann9 Theorem Theorem: Every simple polygon admits a triangulation. Proof:By induction on n. Let n>3, and assume theorem is true for all m<n. Let P be polygon with n vertices. We first prove the existence of a diagonal in P. Let v be leftmost vertex of P. Let u and v be two neighboring vertices of v. If uw lies in the interior of P we have found a diagonal. Else, there are one or more vertices inside the triangle defined by u, v, and w. Let v´ be the farthest vertex from uw. The segment connecting v´ to v cannot intersect an edge of p (contradicts the definition of v´). Hence vv´ is a diagonal.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann10 Case 2: uw not completely in P Proof of Diagonal Consider leftmost vertex v of P Case 1: uw completely in P u v w u v w

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann11 Diagonals and Triangulation So a diagonal exists. Any diagonal cuts P in two simple sub-polygons P1 and P2. Let m1 be the number of vertices of P1 and m2 the number of vertices of P2. Both m1 and m2 must be smaller than n, so by induction hypothesis P1 and P2 can be triangulated so P can be triangulated as well. Back to the questions Does any triangulation of a polygon P lead to the same number of triangles? If yes, what is the number of triangles?

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann12 Theorem Theorem : Any triangulation of P contains n-2 triangles. Proof : By induction on n. n=3 trivial. Let n>3, and assume theorem is true for all m<n. Consider an arbitrary diagonal in some triangulation T p. This diagonal cuts P into 2 subpolygons with m 1 and m 2 vertices: m 1 + m 2 = n + 2. So by induction hypothesis any triangulation of P i contains m i - 2 triangles  (m 1 - 2) + (m 2 - 2) = n - 2 triangles.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann13 Upper and lower bounds for the number of guards We know that for any simple polygon with n vertices n-2 guards are always enough. But can we do better?

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann14 Upper and lower bounds for the number of guards Idea: Compute a 3-coloring of the vertices and place guards on nodes with the least-frequently used color. No two nodes connected by an edge are assigned the same color. -> Every triangle has all 3 colors. Hence every triangle is watched. Hence the entire polygon is watched.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann15 Example

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann16 3- coloring Theorem: The triangulation graph of a polygon P is 3-colorable. Proof: Induction on n. Clearly, a triangle can be 3-colored. Let n>3, and assume theorem is true for all m<n. By Meister’s Two Ears Theorem, P has an ear abc. Corollary:  n/3  guards are always sufficient to guard a simple Polygon with n vertices. c b a

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann17 Art gallery theorem For a simple polygon with n vertices,  n/3  cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras. Worst-case example?

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann18 Worst-case example Demo