第十章 單變量變異數分析 10-1 變異數分析 10-2 單因子變異數分析的設計 10-3 變異數分析的基本假設條件

Slides:



Advertisements
Similar presentations
第五章 卡方檢定 5-1 卡方檢定 (X2 test) 5-2 適配度檢定 (good-of-fit test)
Advertisements

McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
第三講 Recode、missing value、假設檢定與信賴區間
本章結構 前言 符號介紹與立透法則 指數機率分配 基本無限來源模式 基本有限來源模式 等候系統的經濟分析-最佳化 進階等候模式 16-1.
Stata教學 第六講 變異數分析ANOVA ©Ming-chi Chen 社會統計.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 實驗法.
第十三章 卡方檢定. 學 習 目 標學 習 目 標學 習 目 標學 習 目 標 1. 學習何謂多項試驗 。 2. 學習如何將一群觀測資料與其期望之分配相比較 與檢定。 3. 學習如何檢定兩變數間是否獨立 。
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容:利用分公司之追蹤資料進行企業決策分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1. 假設以下的敘述為一未提供 “ 捷徑計算 ” 能力的程式段,試用程 式設計的技巧,使此敘述經此改 寫的動作後,具有與 “ 捷徑計算 ” 之 處理方法相同之處理模式。 if and then E1 else E2 endif.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
平均值檢定 假設 檢定 One Sample 平均值 是否為 u. One Sample—1 工廠甲過去向 A 公司購買原料, 平均交貨日約為 4.94 日, 標準差 現在 A 公司改組, 甲工廠繼續向 A 公司 購買, 隨機抽取 8 次採購, 平均日數為 4.29 日, 請問 A 公.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
1 單元三 查詢結果的引用分析 Web of Science 利用指引 查看出版及被引用情況 在查詢結果的清單中,可以瀏覽近 20 年來查詢主題出版和被引用的情況。
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
民意調查的分析 II 蔡佳泓 政大選舉研究中心 副研究員. 課程大綱 假設的檢定 研究假設 H1: 研究假設 ( 例: X 與 Y 相關 ) H0: 虛無假設 ( 例: X 與 Y 無關 ) 檢定結果:接受虛無假設或拒斥虛無假 設,但不代表接受研究假設.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 貳 研究設計.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
第三部分:研究設計 ( 二): 研究工具的信效度 與研究效度 (第九章之第 306 頁 -308 頁;第四章)
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 資料蒐集的方法.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
第二十一章 研究流程、論文結構        與研究範例 21-1  研究流程 21-2  論文結構 21-3  研究範例.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
從此處輸入帳號密碼登入到管理頁面. 點選進到檔案管理 點選「上傳檔案」上傳資料 點選瀏覽選擇電腦裡的檔案 可選擇公開或不公開 為平台上的資料夾 此處為檔案分類,可顯示在展示頁面上,若要參加 MY EG 競賽,做品一律上傳到 “ 98 MY EG Contest ” 點選此處確定上傳檔案.
資料結構實習-一 參數傳遞.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
觀測量的權 權的觀念與計算.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Chapter 10 m-way 搜尋樹與B-Tree
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
Unit 3 : 變異數分析 --ANOVA 3.1 範例說明 行銷研究方面, One-Way ANOVA 可 用以研擬市場區隔及目標選擇策略。 教育研究方面,此一模式可用以評估 教師之教學績效。 農業研究方面,此一模式則可用以挑 選使玉米收穫量極大化的肥料。
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
第十二章 變異數分析 12.1 單因子變異數分析 1-way ANOVA Subject : 比較三組以上的母體平均數 k 組資料,母體平均數為 μ 1, …, μ i, …, μ k Data : k 組資料,樣本數為 n 1,…, n k. x ij --- 第 i 組的第 j 個觀察值 N =
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
連續隨機變數 連續變數:時間、分數、重量、……
單因子變異數分析 多重比較 雙因子變異數分析
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
財務管理概論 劉亞秋‧薛立言 合著 (東華書局, 2007)
幼兒行為觀察與記錄 第八章 事件取樣法.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Slide Slide 第 9 章 假設檢定 Part B ( ). 2 Slide Slide 第 9 章 假設檢定 Part B  9.5 母體比例  9.6 假設檢定與決策  9.7 計算型 II 錯誤的機率  9.8 在檢定母體平均數時決定樣本大小 第 9 章假設檢定.
Presentation transcript:

第十章 單變量變異數分析 10-1 變異數分析 10-2 單因子變異數分析的設計 10-3 變異數分析的基本假設條件 10-4 單變量變異數分析 10-5 單變量變異數分析範例 10-6 單變量變異數分析範例:One-Way ANOVA 10-7 重複量數Repeated Measures

10-1 變異數分析 變異數分析(Analysis of Variance)一般分為二大類,分別是ANOVA ( Analysis of Variance)和MANOVA(Multivariate Analysis of Variance),我們簡介如下: 單變量變異數分析 (ANOVA), 只有一個依變數(計量),一個或多個的自變數(非計量,名目),寫成數學式如下: Y1 = X1 + X2 + X3+……+Xn (計量) (非計量) MANOVA (多變量變異數分析)有多個依變數(計量),一個或多個的自變數(非計量),寫成數學式如下: Y1+ Y2+……..+ Yn = X1 + X2 + X3+……+Xn (計量) (非計量, 例如:名目)

10-2 單因子變異數分析的設計 自變數只有一個的變異數分析, 稱為單因子變異數分析, 也就是 y1+y2+…= x (y 可以是一個(含)以上, x 只有 1 個)。單因子變異數分析的2種設計方式: 1. 獨立樣本 2. 相依樣本 1.獨立樣本 受測者隨機分派至不同組別,各組別的受測者没有任何關係, 也稱為完全隨機化設計 (1)各組人數相同: HSD 法, Newman-Keals 法 (2)各組人數不同 (或每次比較2個以上平均數時): Scheffe法 2.相依樣本,有二種情形 (1)重複量數:同一組受測者, 重複接受多次(k)的測試以比較 之間的差異 (2)配對組法:選擇一個與依變數有關控制配對條件完全相同, 以比較k組受測者在依變數的差異

10-3 變異數分析的基本假設條件 變異數分析的基本假設條件有常態、線性、變異數同質性。我們介紹如下: 常態:直方圖, 偏度(skewness)和峰度(kcat osis), 檢定, 改正 (非常態可以透過資料轉型來改正) 線性:變數的散布圖, 檢定, 簡單廻歸+ residual 變異數同質性: 1y, 用Levene檢定 >= 2y時, 用Box’s M檢定

10-4 單變量變異數分析 單變量變異數分析(ANOVA)主要是看依變數(y)只有一個,當我們在比較平均數的不同時,若是我們透過自變數(x)將依變數(y)分成兩組來比較時,稱為t檢定,分成三組(含以上)來比較,稱為ANOVA,t檢定也是ANOVA的一種,我們分別介紹如下: t檢定 (Test) t Test 是用來檢定2 個獨立樣本的平均數差異是否達到顯著的水準。 這二個獨立樣本可以透過分組來達成,計算t檢定時,會需要2個變數,依變數(y)為觀察值,自變數x為分組之組別,其資料的排序如下:

檢定2個獨立樣本的平均數是否有差異(達顯著水準)得考慮從2個母體隨機抽樣本後,其平均數u和變異數σ的各種情形,分別有平均數u相同而變異數平方相同或不同時的情形,平均數u不同而變異數平方相同或不同的情形,我們整理如下表:

在計算2個母體的平均數有無差異時,若是母體的變異數為已知,則使用z檢定,一般很少用,在一般情形下,母體的變異數為未知的情形下,我們都會使用獨立樣本的t檢定,若是樣本小,母體不是常態分佈,則會使用無母數分析,我們整理t檢定於2個獨立母體平均數的比較時,使用時機如下表: 大樣本 (n ≥ 30) 變異數σ已知 ---- 使用z檢定 變異數σ 未知 ---- 使用t檢定 小樣本 (n< 30) , 母體常態分配 變異數σ 已知 ---- 使用z檢定 小樣本 (n< 30) , 母體非常態分配 無論變異數已知或未知 – 使用無母數分析

t檢定的程序 我們進行t檢定的目的是要用來拒絕或無法拒絕先前建立的虛無假設 (Null hypothesis),我們整理t檢定的程序如下: 計算t值 t值 = u1 (平均數) - u2 (平均數) / 組的平均數標準差 u1 是第一組的平均數 u2 是第二組的平均數 查t crit標準值 在研究者指定可接受t分配型態 I (type I) 錯誤機率a (例如: 0.05或0.01) 樣本1和樣本2的degree of freedm = (N1+N2) – 2 我們可以透過查表, 得到 t crit標準值

比較t值和t crit標準值 當t值>t crit值時,會拒絕 Null hypothesis (u1 = u2), 也就是u1 ≠ u2,兩群有顯著差異,接著,我們就可以 檢定平均數的大小或高低,來解釋管理上意義 當t值<tcrit值時,不會拒絕 (有些研究者視為接受) Null hypothesis,也就是 u1= u2,兩群蕪顯者差異,我們就 可以解釋管理上的意義。 F檢定 除了t檢定外,我們也常用F值來檢定單變量多組平均數 是否顥著

10-5 單變量變異數分析範例 我們想了解不同年齡層 A組20 ~29歲,B組30 ~39歲,C組40~49歲,對筆記型Bubble喜好程度是否有差異,隨機抽取年齡層各5個人,以1 – 10的分數請他們評分如下:

三種不同年齡層對筆記型電腦的喜好

F,05,2,12 = 3.89 F>F crit, 所以在5%水準下,顯著,拒絕接受Ho 表示三個階層年齡的人對於筆記型電腦的喜好有顯著的不同,這時候,尚需要進一步地檢定,平均數中的u,有幾個相等,有幾個不同或則是將排列大小,例如:本例題中,對於筆記型電腦的喜好程度是 30 ~ 39歲 >20 ~ 29歲>40 ~ 49歲

SPSS實務操作如下: 1. 開啟範例ANOVA.SAV 2. 按Analyze General Linear Model Univariate 3. 開啟Univariate視窗後, 點選得分score 4. 按,將得分score選入依變數Dependent Variable, 再選編碼code 5. 將編碼code選入自變數的固定因子Fixed Factor 6. 按Model模式 7. 按continue, 回到Univariate畫面 8. 按contrast (比對) 9. 按continue, 回到畫面Univariate 10. 按Plots 11. 按continue, 回到Univariate畫面 12. 按Post Hoc, 選取code 13. 按, 將code選入Post Hoc Test for:, 再選取Scheffe, Tukey 和Duncan 14. 按Continue, 回到畫面Univerate 15. 按Options選項, 選取想要顯示的統計量 16. 按Continue, 回到Univariate畫面 17. 按OK, 出現輸出報表

Univariate Analysis of Variance 報表分析結果如下: Univariate Analysis of Variance Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a Design: Intercept+code Levene’s Test 是用來判定”變異數同質性”的檢定, 我們需要的是不顯著, 才不會違反變異數同質性的條件 我們查看報表結果, F值 = 0.43, Sig顯著的, P值= 0.66 > 0.05, 是不顯著, 代表變異數是同質性, 可以繼續查看結果

Post Hoc Tests code Multiple Comparisons

Post Hoc 檢定, 從多重比較的表中, 可以看出Turkey和Scheffe的檢定結果是一樣的, 都是(I) code 2 和 (J) code 3, 此時(I-J)達正向顯著, 反之, code 3 - code 2時會呈現負向顯著, 代表著code 2 30 ~39歲和code 3 40 ~49歲, 對筆記型電腦的喜好是有顯著差異, 30 ~39歲對於筆記型電腦的平均數高於 40 ~ 49歲對於筆記型電腦的喜好程度 我們整理ANOVA分析的結果如下: 我們經由Levene檢定,結果為不顯著,代表變異數是同質性,經由多重比較後得到 30~39歲和40~49歲,對筆記型電腦的喜好是有顯著的差異,最後再經由敍述性統計分析結果加以判定 30~39歲對於筆記型電腦喜好的平均數高於40~49歲,對於筆記型電腦的喜好程度。

10-6單變量變異數分析範例: One-Way ANOVA 我們在電腦展中,訪問27位人員,經過參觀資訊展後,我們想了解根據適用(Fit)的特性而購買國內品牌,組裝電腦或國外品牌的程度是否有差異? Category 1國內品牌,Category 2組裝電腦,Category 3國外品牌 我們整理根據 適用(Fit)購買國內品牌、組裝電腦或國外品牌電腦的資料如下表:

我們將購買國內品牌、組裝電腦和國外品 牌的評分資料輸入至SPSS。 如下表:

實務操作: 開啟範例檔 ANOVA1. SAV 按Analyze→Compare Means→One-Way ANOVA 開啟One-Way ANOVA 視窗,選fit 入Dependent List,選Category入Factor 按Post Hoc,選Scheffe 和Tukey 按Continue 按Option,選Descriptive 和Homogeneity of variance test 按Continue, 按OK,出現報表結果

我們整理報表結果如下:

變異數分析摘要表有組間(Between Groups)、組內(Within Groups)及全體(Total)三部分。 組間(Between Groups)的離均差平方和(Sum of Squares)=20.222,自由度=2,均方(Mean Square)=10.111,F 值=3.445,顯著性值 p=0.048。 組內(Within Groups) 的離均差平方和(Sum of Squares)=70.444,自由度=24,均方(Mean Square)=2.935 。 全體(Total) 的離均差平方和(Sum of Squares)= 90.667,自由度=26。 對fit (適用) 依變項而言,F 達到顯著水準(F=3.445;p=.048<.05)。因此拒絕虛無假設,接受對立假設,表示不同產品(1 國內品牌,2 組裝電腦,3 國外品牌)的fit (適用)有顯著差異存在,而那些配對組別的差異達到顯著,須要進行事後比較。

Post Hoc Tests 事後比較

事後比較結果,採兩兩配對組別比較。從 Scheffe 方法作事後比較可以看出以適用度而言,國外品牌顯著高於國內品牌,國外品牌與組裝電腦沒有顯著差異,國內品牌與組裝電腦沒有顯著差異。 範例結果整理如下: 1.敘述性統計量

2.變異數分析統計表 *P<.05 事後比較: 事後比較結果,以適用度而言,國外品牌顯著高於國內品牌,國外品牌與組裝電腦沒有顯著差異,國內品牌與組裝電腦沒有顯著差異。

10-7 重複量數Repeated Measures 同一組受測者,重複接受多次(k)的測試以比較之間的差異。 重複量數Repeated Measures 範例: 在學習統計分析的學生中,我們想知道學生在學習前,學習中和學習後的評價情形,分別請15 位學生在學習前,學習中和學習後給予評分如下:

score1學習前、score2學習中、score3學習後

實務操作: 開啟範例檔 ANOVA2. SAV 按Analyze  General Linear Model  Repeated Measures 開啟Repeated Measures視窗,在Within-Subject Factor Name:輸入factor,Number of Levels:輸入 按Add 按Define 選score1,按,選score2,按,選score3,按 按Options,選factor,按,選Compare main effects,選Descriptive statistics 按Continue,回到Repeated Measures視窗 按OK,出現報表結果

我們整理報表結果如下: Measure: MEASURE_1 score1學習前、score2學習中、score3學習後 Descriptive Statistics敘述性統計量 score1學習前 的平均數=5.93,標準差=1.831。 score2學習中 的平均數=6.53,標準差=1.06。 score3學習後 的平均數=7.33,標準差=1.234。

Multivariate Tests(b) a Exact statistic b Design: Intercept Within Subjects Design: factor 在單因子相依樣本變異數分析中,無解釋意義,此部分的結果可以省略。

Mauchly's Test of Sphericity(b) Measure: MEASURE_1 球形檢定:檢定問卷填答的分數,兩兩成對相減而得到差異值的變異數是否相等,Mauchly‘s W 值需大於0.75,Greenhouse-Geisser 值需大於0.75,Huynh-Feldt 值需大於 0.75,未達顯著水準,表示未違反變異數分析之球形檢定,代表問卷填答的分數,兩兩成對相減而得到差異值的變異數是相等。 本範例的球形檢定Mauchly 檢定值為.822,卡方值等於2.55,df=2,顯著性p=.279>.05,未達顯著水準,應接受虛無假設,表示未違反變異數分析之球形檢定。

Tests of Within-Subjects Effects Measure: MEASURE_1 由於之前球面性檢定結果並未違反球面性假定,直接看「假設為球形」(Sphericity Assumed)之橫列資料,typeIII 之SS=14.8,df=2,MS=7.4,F=4.723,顯著性p=.017<.05,達到.05 顯著水準,表示自變項的效果顯著。

Tests of Between-Subjects Effects Measure: MEASURE_1 Transformed Variable: Average 填答問卷者間效果的檢定值 (Tests of Between-Subjects Effects ) 即相依樣本中,區塊(Block)間的差異,包括的離均差平方和=40.133、自由度=14、均方值=2.867。

Estimated Marginal Means factor Estimates Measure: MEASURE_1 估計邊緣平均數,其內容包括各水準的平均數、平均數的估計標準誤、平均數95%的信賴區間。

Pairwise Comparisons Measure: MEASURE_1 Based on estimated marginal means * The mean difference is significant at the .05 level. a Adjustment for multiple comparisons: Least Significant Difference(equivalent to no adjustments). 星號(*)代表平均數差異值(Mean Difference)達到.05 顯著水準。 相依樣本的事後比較: 由上表中我們可以發現:學習後之評價 (M=7.333)顯著的高於學習前之評價 (M=5.933),學習後之評價與學習中之評價沒有顯著差異,學習中之評價與學習前之評價沒有顯著差異。

範例結果整理如下: 敘述性統計量 變異數分析統計表 **P<.01 相依樣本的事後比較: 由上表中我們可以發現:學習後之評價(M=7.333)顯著的高於學習前之評 價(M=5.933),學習後之評價與學習中之評價沒有顯著差異,學習中之評 價與學習前之評價沒有顯著差異。