1 A new field dependence of Landau levels in a graphene-like structure Petra Dietl, Ecole Polytechnique student Frédéric Piéchon, LPS G. M. PRL 100, 146802.

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Dirac-Microwave Billiards, Photonic Crystals and Graphene Supported by DFG within SFB 634 S. Bittner, C. Cuno, B. Dietz, T. Klaus, M. Masi, M. Miski-Oglu,
Cold Atoms in rotating optical lattice Sankalpa Ghosh, IIT Delhi Ref: Rashi Sachdev, Sonika Johri, SG arXiv: Acknowledgement: G.V Pi, K. Sheshadri,
Spin-orbit coupling in graphene structures D. Kochan, M. Gmitra, J. Fabian Stará Lesná,
Graphene: why πα? Louis Kang & Jihoon Kim
Physics 451 Quantum mechanics I Fall 2012 Dec 5, 2012 Karine Chesnel.
Chene Tradunsky & Or Cohen with the great help of Ariel Amir.
Gauge Field of Bloch Electrons in dual space First considered in context of QHE Kohmoto 1985 Principle of Quantum Mechanics Eigenstate does.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
An Introduction to Graphene Electronic Structure
Pavel Buividovich (Regensburg). They are very similar to relativistic strongly coupled QFT Dirac/Weyl points Dirac/Weyl points Quantum anomalies Quantum.
Chiral symmetry breaking in graphene: a lattice study of excitonic and antiferromagnetic phase transitions Ulybyshev Maxim, ITEP, MSU.
Bloch Oscillations Alan Wu April 14, 2009 Physics 138.
Femtochemistry: A theoretical overview Mario Barbatti III – Adiabatic approximation and non-adiabatic corrections This lecture.
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Hofstadter’s Butterfly in the strongly interacting regime
PHYS3004 Crystalline Solids
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento|Achim Richter |1 Graphene and Playing Relativistic Billards with microwaves Something.
Microwave Billiards, Photonic Crystals and Graphene
Ballistic transport,hiral anomaly and radiation from the electron hole plasma in graphene Ballistic transport, chiral anomaly and radiation from the electron.
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
ECT* 2013 Microwave billiards, graphene and photonic crystals
Dirac fermions in Graphite and Graphene Igor Lukyanchuk Amiens University I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, (2004) - Phys.
Berry Phase Effects on Electronic Properties
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
QUANTUM CHAOS IN GRAPHENE Spiros Evangelou is it the same as for any other 2D lattice? 1.
Pumping 1. Example taken from P.W.Brouwer Phys. Rev.B 1998 Two parameter pumping in 1d wire back to phase 1 length along wire Uniform conductor: no bias,
9. Fermi Surfaces and Metals
Graphene - Electric Properties
2012 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter |1 Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards.
Confinement-deconfinement Transition in Graphene Quantum Dots P. A. Maksym University of Leicester 1. Introduction to quantum dots. 2. Massless electron.
Michael S. Fuhrer University of Maryland Graphene: Scratching the Surface Michael S. Fuhrer Professor, Department of Physics and Director, Center for Nanophysics.
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Band structure of graphene and CNT. Graphene : Lattice : 2- dimensional triangular lattice Two basis atoms X축X축 y축y축.
Gilles Montambaux, Orsay Les graphènes artificiels, des microondes aux atomes froids TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
Densities of States of Disordered Systems from Free Probability
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Nanoelectronics Chapter 5 Electrons Subjected to a Periodic Potential – Band Theory of Solids
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Flat Band Nanostructures Vito Scarola
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Topological phases driven by skyrmions crystals
Quantum transport in GFET for a graphene monolayer
Photo-induced topological phase transitions in ultracold fermions
Review of solid state physics
Igor Luk’yanchuk, Yakov Kopelevich
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Qian Niu 牛谦 University of Texas at Austin 北京大学
Band structure: Semiconductor
Gauge structure and effective dynamics in semiconductor energy bands
Electronic properties in moiré superlattice
Atomic BEC in microtraps: Heisenberg microscopy of Zitterbewegung
Molecular Orbital Theory
Quantum mechanics II Winter 2012
"Grafeno : Prêmio Nobel em Física de 2010 e Perspectivas Tecnológicas“
Nonlinear response of gated graphene in a strong radiation field
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Evidence for a fractional fractal quantum Hall effect in graphene superlattices by Lei Wang, Yuanda Gao, Bo Wen, Zheng Han, Takashi Taniguchi, Kenji Watanabe,
Berry phase in graphene: a semi-classical perspective
Fig. 3 Realization of the Su-Schrieffer-Heeger (SSH) model.
Fig. 3 Realization of the Su-Schrieffer-Heeger (SSH) model.
Presentation transcript:

1 A new field dependence of Landau levels in a graphene-like structure Petra Dietl, Ecole Polytechnique student Frédéric Piéchon, LPS G. M. PRL 100, (2008)

2 field dependence of Landau levels Schrödinger electron gasGraphene: Weyl (massless Dirac) electron gas other field dependencies for 2D gas ?

3 new field dependence of Landau levels hybrid 2D electron gas : new dispersion relation

4 tight-binding problem on honeycomb lattice hexagonal Bravais lattice+2 atoms basis Bloch theorem: BA Gap ? Y. Hasegawa et al., 2006

5 Dirac points energy bands graphene: isotropic Dirac gas isotropic Dirac gas

6 Landau levels of graphene Hofstadter-Rammal butterfly honeycomb lattice in a magnetic field low field Valley degeneracy 2-fold degeneracy of LL

7 anisotropic Dirac gas energy bands moving Dirac points

8 Landau levels of anisotropic Dirac gas low field lifts 2-fold LL degeneracy Y. Hasegawa, M. Kohmoto, 2006

9 anisotropic Dirac gas moving Dirac points

10 energy bands anisotropic hybrid Schrödinger-Dirac gas Merging of Dirac points

11 “hybrid” gas

12 hybrid Schrödinger-Dirac gas Density of statesOnsager argument gap opening

13 A simple problem of quantum mechanics Instead of for a linear spectrum

14 Quartic oscillator Harmonic oscillator

15  and Berry’s phase Roth, 1966 Wilkinson

16 Universal features for 2D lattices with two atoms basis model oblique lattice

17 Phase diagram 1 GAP Dirac spectrum graphene GAP “Hybrid” spectrum

18 Summary motion and merging of Dirac points universal features of 2D Bravais lattices with 2 atoms basis tight binding Hamiltonian on honeycomb lattice experimental realization? next nearest neighbor hopping  tilted cones Landau levels with renormalized velocity and Quantum Hall effect (J.N. Fuchs, M.O. Goerbig, F. Piéchon and G.M. ‏ arXiv: Realization of a graphene structure in atomic gases A. Kobayashi, S. Katayama, Y. Suzumura, H. Fukuyama (2006) Massless Dirac fermions in organic conductor a-(BEDT-TTF)2I3 ‏

19 4 atoms basis, 8 hopping integrals Dirac cones in organic conductors

20 I= conic II= conic, but metallic III= gap tilted Dirac cones hybrid model transition line 2atoms basis 4 hopping integrals

21 It is enough to consider… 2 atoms per cell, 4 hopping integrals 4 atoms per cell, 8 hopping integrals

22 I = conic IV= gap

23

24

25 The Chocolate LEDERER PrizeThe NOBEL Prize First recipient : Pascal Lederer FRANCAIS Leder er Chocolate