Jairo Sinova (TAMU) NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials Tomas Jungwirth (TAMU, Institute of.

Slides:



Advertisements
Similar presentations
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Advertisements

Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Spin-orbit coupling based spintronics: Extraordinary magnetoresistance studies in semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher,
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Current Nanospin related theory topics in Prague in collaboration with Texas and Warsaw based primarily on Nottingham and Hitachi experimental activities.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Spintronics = Spin + Electronics
JAIRO SINOVA Research fueled by: NERC Challenges and Chemical Trends in Achieving a Room Temperature Dilute Magnetic Semiconductor: A Spintronics Tango.
Spin transport in spin-orbit coupled bands
Making semiconductors magnetic: new materials properties, devices, and future JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge.
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
JAIRO SINOVA Research fueled by: Denver March 9 th 2007 Spin currents, spin-Hall spin accumulation, and anomalous Hall transport in strongly spin-orbit.
Spin-injection Hall Effect:
Research fueled by: Freie Universitaet Berlin April 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR New paradigms in spin-charge.
Tomas Jungwirth, Jan Mašek, Alexander Shick Karel Výborný, Jan Zemen, Vít Novák, et al. Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew.
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Research fueled by: Ohio State University February 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Exploiting the echoes of special.
Jairo Sinova Texas A &M University References: Jungwirth, Sinova et al, arXive: , and Jungwirth et al, Theory of ferromagnetic (III,Mn)V semiconductors,
School of Physics and Astronomy, University of Nottingham, UK
Research fueled by: Forschungszentrum Jülich November 11 th, 2009 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg W.
Jason Kaszpurenko Journal Club Feb. 3, 2011 Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing Alberi, et all, Phys.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Institute of Physics ASCR
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Spintronics and magnetic semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge.
Jairo Sinova (TAMU) Making semiconductors magnetic: A new approach to engineering quantum materials NERC SWAN.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Magneto-transport anisotropy phenomena in GaMnAs and beyond Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
SPINTRONICS Tomáš Jungwirth Fyzikální ústav AVČR University of Nottingham.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
FZU Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors J.Mašek, J. Kudrnovský, F.Máca, T.Jungwirth, Jairo Sinova, A.H.MacDonald.
Electric-field controlled semiconductor spintronic devices
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Spin-dependent transport phenomena in strongly spin-orbit coupled mesoscopic systems: spin Hall effect and Aharonov-Casher Hong Kong, August 17 th 2005.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Dilute moment ferromagnetic semicinductors for spintronics
Presentation transcript:

Jairo Sinova (TAMU) NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials Tomas Jungwirth (TAMU, Institute of Physics, Czech Republic, U. of Nottingham) NERC SWAN

OUTLINE Motivation Ferromagnetic semiconductor materials: –(Ga,Mn)As - general picture –Growth and physical limits on T c –Related FS materials Ferromagnetic semiconductors & spintronics –Tunneling anisotropic magnetoresistive device –Transistors

Ferromagnetic semiconductor research for spintronics: Motivations and strategies 1.Find new effects in this new material and utilize in conventional metal-based spintronics 2. Develop a three-terminal gatable spintronic device to progress from sensors & memories to transistors & logic In the 2 nd part of the talk we show examples of 1. & 2. and a combination of both principles

Ferromagnetic semiconductors GaAs - standard III-V semiconductor Group-II Mn - dilute magnetic moments & holes & holes (Ga,Mn)As - ferromagnetic semiconductor semiconductor Need true FSs not FM inclusions in SCs Mn Ga As Mn

Ga As Mn What happens when a Mn is placed in Ga sites: Mn–hole spin-spin interaction hybridization Hybridization  like-spin level repulsion  J pd S Mn  s hole interaction Mn-d As-p In addition to the Kinetic-exchange coupling, for a single Mn ion, the coulomb interaction gives a trapped hole (polaron) which resides just above the valence band 5 d-electrons with L=0  S=5/2 local moment intermediate acceptor (110 meV)  hole

Mn Ga As Mn EFEF DOS Energy spin  spin  Transition to a ferromagnet when Mn concentration increases GaAs:Mn – extrinsic p-type semiconductor FM due to p-d hybridization (Zener local-itinerant kinetic-exchange) valence band As-p-like holes As-p-like holes localized on Mn acceptors << 1% Mn ~1% Mn >2% Mn onset of ferromagnetism near MIT Mn Ga As Mn Ga As Mn

(Ga,Mn)As synthesis Low-T MBE to avoid precipitation High enough T to maintain 2D growth  need to optimize T & stoichiometry for each Mn-doping Inevitable formation of interstitial Mn- double-donors compensating holes and moments  need to anneal out but without loosing Mn Ga high-T growth optimal-T growth

Interstitial Mn out-diffusion limited by surface-oxide GaMnAs GaMnAs-oxide Polyscrystalline 20% shorter bonds Mn I ++ O Optimizing annealing-T another key factor Rushforth et al, ‘08 x-ray photoemission Olejnik et al, ‘08 10x shorther annealing with etch

OUTLINE Motivation Ferromagnetic semiconductor materials: –(Ga,Mn)As - general picture –Growth and physical limits on T c –Related FS materials Ferromagnetic semiconductors & spintronics –Tunneling anisotropic magnetoresistive device –Transistors

“... Ohno’s ‘98 T c =110 K is the fundamental upper limit..” Yu et al. ‘03 “…T c = K independent of x Mn >10% contradicting Zener kinetic exchange...” Mack et al. ‘08 “Combinatorial” approach to growth with fixed growth and annealing T’s Tc limit in (Ga,Mn)As remains open 2008 Olejnik et al 185K!!

Can we have high Tc in Diluted Magnetic Semicondcutors? T c linear in Mn Ga local (uncompensated) moment concentration; falls rapidly with decreasing hole density in heavily compensated samples. Define Mn eff = Mn sub -Mn Int NO IDENTIFICATION OF AN INTRINSIC LIMIT NO EXTRINSIC LIMIT (lines – theory, Masek et al 05) Relative Mn concentrations obtained through hole density measurements and saturation moment densities measurements. Qualitative consistent picture within LDA, TB, and k.p

8% Mn Open symbols as grown. Closed symbols annealed High compensation Linear increase of Tc with Mn eff = Mn sub -Mn Int Tc as grown and annealed samples ● Concentration of uncompensated Mn Ga moments has to reach ~10%. Only 6.2% in the current record Tc=173K sample ● Charge compensation not so important unless > 40% ● No indication from theory or experiment that the problem is other than technological - better control of growth-T, stoichiometry

Weak hybrid. Delocalized holes long-range coupl. Strong hybrid. Impurity-band holes short-range coupl. InSb GaP d5d5 (Al,Ga,In)(As,P) good candidates, GaAs seems close to the optimal III-V host Other (III,Mn)V’s DMSs Mean-field but low T c MF Large T c MF but low stiffness Kudrnovsky et al. PRB 07

III = I + II  Ga = Li + Zn GaAs and LiZnAs are twin SC Masek, et al. PRB (2006) LDA+U says that Mn-doped are also twin DMSs n and p type doping through Li/Zn stoichiometry No solubility limit for group-II Mn substituting for group-II Zn !!!!

OUTLINE Motivation Ferromagnetic semiconductor materials: –(Ga,Mn)As - general picture –Growth and physical limits on T c –Related FS materials Ferromagnetic semiconductors & spintronics –Tunneling anisotropic magnetoresistive device –Transistors

AMR ~ 1% MR effect TMR ~ 100% MR effect TAMR Exchange split & SO-coupled bands: Exchange split bands: Au discovered in (Ga,Mn)As Gold et al. PRL’04

As-p-like holes Strong exchange splitting & SO coupling in (Ga,Mn)As Standard MBE techniques for high-quality tunneling structures Mn Ga As Mn

ab intio theory Shick, et al, PRB '06, Park, et al, PRL '08 TAMR in metal structures experiment Park, et al, PRL '08 Also studied by Parkin et al., Weiss et al., etc.

Gating of highly doped (Ga,Mn)As: p-n junction FET p-n junction depletion estimates Olejnik et al., ‘08 ~25% depletion feasible at low voltages (Ga,Mn)As/AlOx FET with large gate voltages, Chiba et al. ‘06

AMR Increasing  and decreasing AMR and T c with depletion Tc

Persistent variations of magnetic properties with ferroelectric gates Stolichnov et al., Nat. Mat.‘08

Electro-mechanical gating with piezo-stressors Rushforth et al., ‘08 Strain & SO  Electrically controlled magnetic anisotropies via strain

Single-electron transistor Two "gates": electric and magnetic (Ga,Mn)As spintronic single-electron transistor Huge, gatable, and hysteretic MR Wunderlich et al. PRL ‘06

AMR nature of the effect normal AMR Coulomb blockade AMR

& electric & magnetic control of Coulomb blockade oscillations Q0Q0 Q0Q0 e 2 /2C  [ 010 ]  M [ 110 ] [ 100 ] [ 110 ] [ 010 ] SO-coupling   (M) SourceDrain Gate VGVG VDVD Q Single-electron charging energy controlled by V g and M

CBAMR if change of |  (M)| ~ e 2 /2C CBAMR if change of |  (M)| ~ e 2 /2C  In our (Ga,Mn)As ~ meV (~ 10 Kelvin)In our (Ga,Mn)As ~ meV (~ 10 Kelvin) In room-T ferromagnet change of |  (M)|~100KIn room-T ferromagnet change of |  (M)|~100K Room-T conventional SET (e 2 /2C  >300K) possible Theory confirms chemical potential anisotropies in (Ga,Mn)As & predicts CBAMR in SO-coupled room-T c metal FMs

Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 V DD V A V B V A V B Vout OFF ON OFF ON OFF AB Vout ON OFF ON OFF ON 1 1 OFF 1 “OR” Nonvolatile programmable logic

V DD V A V B V A V B Vout Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 AB Vout “OR” Nonvolatile programmable logic

Physics of SO & exchange SET Resistor Tunneling device Chemical potential  CBAMR Tunneling DOS  TAMR Group velocity & lifetime  AMR Device designMaterials metal FMs FSs FSs and metal FS with strong SO

Allan MacDonald U of Texas Tomas Jungwirth Inst. of Phys. ASCR U. of Nottingham Joerg Wunderlich Cambridge-Hitachi Laurens Molenkamp Wuerzburg Mario Borunda Texas A&M U. Other collaborators: Bernd Kästner, Satofumi Souma, Liviu Zarbo, Dimitri Culcer, Qian Niu, S-Q Shen, Brian Gallagher, Tom Fox, Richard Campton Alexey Kovalev Texas A&M U. Liviu Zarbo Texas A&M U. Matching TAMU funds Xin Liu Texas A&M U. Bryan Gallagher U. Of Nottingham Sankar Das Sarma U. of Maryland 30

Conclusion (checks of theory) In the metallic optimally doped regime GaMnAs is well described by a disordered-valence band picture: both dc-data and ac-data are consistent with this scenario. The effective Hamiltonian (MF) and weak scattering theory (no free parameters) describe (III,Mn)V metallic DMSs very well in the optimally annealed regime: Ferromagnetic transition temperatures   Magneto-crystalline anisotropy and coercively   Domain structure   Anisotropic magneto-resistance   Anomalous Hall effect   MO in the visible range   Non-Drude peak in longitudinal ac-conductivity  Ferromagnetic resonance  Domain wall resistance  TAMR  TB+CPA and LDA+U/SIC-LSDA calculations describe well chemical trends, impurity formation energies, lattice constant variations upon doping