Lowest Strata in Gale Mound (near landing site) Latitude/longitude: 4°47'30"S, 137°17'50”E Rationale: Base of the exposed stratigraphic section for the.

Slides:



Advertisements
Similar presentations
Remaining Uncertainties: Little evidence for shorelines corresponding to the elevation of the delta surface and the spillway to the eastern basin, though.
Advertisements

Circular layered structures Long/lat: E, 23.98N E, 24.05N E, 24.04N E, 24.01N E, 24.09N E, 24.02N.
Remaining Uncertainties: Is there evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
Rationale for Hematite Sites Mineralogy and petrology provide critical inputs to interpreting geologic processes Volcanic, lacustrine, chemical precipitation,
Now, we use two methods to do the morphological dilation to image A with B: A: B: + +: the origin.
Paleo-surface Long/lat: from E, 24.21N to E, 23.95N Rational: A layer of the clay unit remained at the surface for a longer time than the rest.
Small valleys in the southern part of the ellipse Long/lat: E, 23.85N Rational: Sediments deposited in this partly filled valley may be of utmost.
Putative eroded inverted valley Long/lat: E, 23.93N Rational: Sediments deposited in this filled and inverted valley, at the base of the remnant.
1. Rationale: APPROXIMATE ESTIMATION FOR HYDROTHERMAL BAND: ZONE INSIDE OF EBERSWALDE CRATER Juan C. Echaurren Codelco Chile North Division Fourth MSL.
Lobate ejecta from large and fresh crater Long/lat: E, 23.69N E, 23.74N Rational: A crater of diameter ~12 km has exhumed material from.
Strongly eroded unit Long/lat: from E, 24.12N to E, 23.87N Rational: This erosion feature bond to one particular stratigraphic level in the.
Contact between layered sulfate & clay bearing strata and fluvial channel at Gale crater Latitude/longitude: 4°46'26" S, 137°23'42" E Rationale: Alteration.
Large craters outside the ellipse Long/lat (by decreasing size): E, 24.24N E, 24.30N E, 24.25N E, 24.32N E,
Phyllosilicate-bearing Trough Latitude/longitude: North, East Rationale: The phyllosilicates exposed here may be lacustrine sediments. Morphology.
1 2 km TARGET INSIDE OF EBERSWALDE CRATER Juan C. Echaurren Codelco Chile North Division Fourth MSL Landing Workshop Latitude/Longitude: °S, °E.
Large fractures (to be differentiated from the small polygonal fracturation) Long/lat: (no particular order) E, 23.84N E, 23.85N E,
Breccia at Mawrth: polygonal breccia & breccia in elongate pods Latitude/longitude: 1) 24° 8'40"N, 18°53'55"W 2) 24° 8'55"N, 18°53'40"W Rationale: Interesting.
Mound-Skirting Unit Outcrop and Inverted Channel Latitude/longitude: North, East Rationale: This outcrop may be an alluvial fan or part of.
Oyama layered deposits Long/lat: from E, 24.00N to E, 23.20N Rational: Clays have been transported onto the floor of Oyama and deposited as.
Remnant buttes Long/lat: (in random order) E, 23.89N E, 23.95N E, 23.98N E, 24.04N E, 24.05N E, 24.14N.
Original image: 512 pixels by 512 pixels. Probe is the size of 1 pixel. Picture is sampled at every pixel ( samples taken)
Ancient eroded layered craters Long/lat : (ranked by distance from ellipse center) E, 24.05N E, 24.01N E, 23.98N E, 23.86N.
Light-toned sulfate/clay layer at Gale crater Latitude/longitude: X North, Y East Rationale: Location of transition between phyllosilicate-rich units and.
Layers on floor of Mawrth Vallis Long/lat: from E, 24.20N to E, 23.60N Rational: Understanding the formation of the layered unit, its depositional.
Crater Floor Stratigraphy Latitude/longitude: North, East Rationale: Several crater floor units are exposed in close proximity to each other.
Erosion-resistant Polygonal Ridges Latitude/longitude: North, East Rationale: These features are widespread in Gale crater and may be cemented.
Phyllosilicate-bearing outcrop within the Eberswalde Crater landing ellipse Latitude/longitude: North, East Rationale: This brecciated,
Large valleys north of landing site Long/lat: from E, 24.26N to E, 24.58N Rational: Sediments deposited in these valleys may be of utmost interest.
Lower blue unit Long/lat: E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration. Morphology & mineralogy:
Contact between putative delta and brecciated substrate in western Eberswalde Crater Latitude/longitude: North, East Rationale: Phyllosilicate-bearing,
Eroded Crater at Mawrth: at least 2 generations of fill. Latitude/longitude: 24° 2'20"N, 18°56'20"W (previously proposed but with different rationale)
Lower blue unit Long/lat: E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration, maybe due to hydrothermal.
Embedded Crater at Mawrth: possible crater within stratigraphy in the wall of a younger crater Latitude/longitude: 23°26'55"N, 18°52'20"W Rationale: Provides.
Light-Toned Ridge Latitude/longitude: North, East Rationale: A prominent part of the stratigraphy of the Gale mound, containing phyllosilicates.
Do you Dare Challenge The Great, All Knowing Robot Robie!
New hydrated spectral phase and stratigraphy of smectites, sulfates, and other hydrated minerals in Ius Chasma, Valles Marineris L Roach, JF Mustard, S.
2 nd Mars 2020 Landing Site Workshop August 4, 2015 Exploring the Volcanic, Alteration, and Fluvio-Lacustrine History of Early Mars at the Jezero Crater.
Holden Stratal Geometries & Depositional Hypotheses Dawn Sumner, Gilles Dromart, Ralph Milliken, Ken Edgett, Mike Malin (by way of Ken) with input from.
Science Goals MSL’s primary scientific goal is to explore a landing site as a potential habitat for life, and assess its potential for preservation of.
MSL Science Team Landing Sites Discussions — Gale CraterEdgett, p. 1 Gale Crater MSL Candidate Landing Site in Context by K. Edgett April 2010.
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA Current Orbiter Capabilities for Future Landing Site Selection Richard Zurek.
Sharon Wilson, Smithsonian Institution Alan Howard, University of Virginia Jeff Moore, NASA Ames Research Center Terby Crater Terby Crater First MSL Landing.
Measurability – MSL payload instruments Based on definitive nature of the biosignature and its measurability by the MSL payload o diagnostic organic molecules.
NASA’s Exploration Plan: “Follow the Water” GEOLOGY LIFE CLIMATE Prepare for Human Exploration When Where Form Amount WATER NASA’s Strategy for Mars Exploration.
A soil profile is an exposure from the surface downward through a soil to its parent material. Soils-3-1 Image: NRCS Image: Martin Miller.
Mars Student Imaging Program The Three Principles Impact Craters Features you must know and understand. Ejecta – Material, from the crater, that was thrown.
The Gale Crater Mound: A Candidate Landing Site for the 2009 Mars Science Laboratory Jim Bell 1, Ken Edgett 2, Scott Rowland 3, Mike Malin 2 Representing.
Determining surface characteristics at candidate MSL landing sites using THEMIS high-resolution orbital thermal inertia data Robin Fergason Philip Christensen.
Enabling Capabilities A Robotic Field Geologist Access to a site mapped from orbit Long life, mobility, capability to explore a local region Remote sensing.
Presented by Ryan Moyé. Deuterium + Hydrogen
Mars Science Laboratory 1st Landing Site Workshop Pasadena, CA — 31 May – 2 June Fine-layered Meridiani crater for the MSL Landing Site L. V. Posiolova,
A Wealth of Opportunities The signature of water is pervasive in and around the proposed ellipse, which resides ~600 km ENE of Opportunity –Ellipse: Over.
TRAVERSE ACROSS LOWER STRATA OF MERIDIANI PLANUM LAYERED DEPOSITS Alan D. Howard Department of Environmental Sciences University of Virginia Jeffrey M.
Sinus Meridiani (Hematite) Landing Site for 2003 MER Phil Christensen & The TES Science Team Presentation to NAI MWG by Vicky Hamilton 8 January 2001.
Gale Crater Stratigraphic Measurements and Preliminary Interpretations Ryan Anderson April, 2009.
Remaining Uncertainties: Little evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
Aqueous Alteration and Habitability in Nili Fossae J.F. Mustard, F. Poulet, N. Mangold, J-P. Bibring, R.E. Milliken, S. Pelkey, and L. Kanner Noachian.
Introduction: The Mawrth Vallis region has been identified by the Mars Express OMEGA and MRO CRISM instruments as a region with abundant hydrated phyllosilicate.
Visit NE Syrtis Major! Win Valuable Martian Geological History! Ralph P. Harvey Case Western Reserve University Planetary Time Share Specialist Ralph P.
Fresh Exposures of Hydrous Fe-bearing Amorphous Silicates on Mars
Relative Age Dating What is it?
Morphological Image Processing
Habitability - Framework
A soil profile is an exposure from the surface downward through a soil to its parent material. Image: Martin Miller Image: NRCS Soils-3-1.
How Can We Define Stratal Units?
North Wall of the Grand Canyon
Going to Gale Crater Matt Golombek Mars Exploration Program Landing Site Scientist, JPL Malin and Edgett 2000.
Layered Quadrants Diagram for PowerPoint
Observations of an Aeolian Landscape: Gale Crater, Mars
Fig. 2 Sampling. Sampling. (A) Extant stratigraphic section. Zenithal (B) and frontal (C) views of the flowstone capping the excavated deposit. The rectangle.
Presentation transcript:

Lowest Strata in Gale Mound (near landing site) Latitude/longitude: 4°47'30"S, 137°17'50”E Rationale: Base of the exposed stratigraphic section for the Gale mound, and thus the oldest deposits Morphology & Mineralogy: Moderately well defined planar beds exposed in a topographic low, stratigraphically below the proposed layer with clay mineral signatures but possibly lacking sulfates (Milliken et al. 2010). What will the rover specifically do here? MSL will characterize mineralogy and stratigraphic context of interbedded or intermixed clays and sulfates. (This image was taken from the sample landing site PowerPoint presentation because is overlaps the proposed target.)

PSP_009716_1755 This target provides the lowest stratal exposures of the lower mound and should be below the clay bed proposed by Milliken et al. (2010). The moderately good exposure of layers should allow MSL to evaluate the possible segregation or intermixing of clays and sulfates to evaluate depositional and diagenetic influences on their origins. Exposures of bedding are better here than north of the entrance to the canyon, possibly allowing better constraints that investigations to the north. Stratigraphic Section

Target of interest is outside of published CRISM images, but is stratigraphically equivalent to clay and sulfate bearing strata to northeast. From R. Milliken 4 th MSL workshop presentation (These image were taken from the sample landing site PowerPoint presentation because they overlap the proposed target.)