Lower blue unit Long/lat: 341.46E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration. Morphology & mineralogy:

Slides:



Advertisements
Similar presentations
Remaining Uncertainties: Little evidence for shorelines corresponding to the elevation of the delta surface and the spillway to the eastern basin, though.
Advertisements

A Traverse through Hesperian Ridged Plains on Mars: Extending the Work of Ron Greeley in Gusev Crater Steve Ruff, Arizona State University Vicky Hamilton,
Which Clays are Really Present on Mars? or Are you sure about those squiggly lines? Ralph Milliken (JPL/Caltech) 50 m Clays in Shalbatana Vallis (HiRISE)
Circular layered structures Long/lat: E, 23.98N E, 24.05N E, 24.04N E, 24.01N E, 24.09N E, 24.02N.
Putative mineralized fractures Long/lat: E, 23.99N Rational: A group of ~parallel levees stand out on one outcrop on the flank of Mawrth Vallis.
Remaining Uncertainties: Is there evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
Martian Mineralogy: Important Minerals for Understanding Geological Processes on Mars Liz Rampe (NASA-JSC/ORAU) 9 July 2012
The Light-toned Sediments in and near lower Mawrth Vallis are a Drape Deposit Alan D. Howard Jeffrey M. Moore.
Paleo-surface Long/lat: from E, 24.21N to E, 23.95N Rational: A layer of the clay unit remained at the surface for a longer time than the rest.
Valleys on Oyama flank Long/lat: From E, 24.23N to E, 23.90N Rational: Several gullies/valleys have cut into the flank of Oyama. Sediments.
Small valleys in the southern part of the ellipse Long/lat: E, 23.85N Rational: Sediments deposited in this partly filled valley may be of utmost.
Putative eroded inverted valley Long/lat: E, 23.93N Rational: Sediments deposited in this filled and inverted valley, at the base of the remnant.
Lobate ejecta from large and fresh crater Long/lat: E, 23.69N E, 23.74N Rational: A crater of diameter ~12 km has exhumed material from.
Strongly eroded unit Long/lat: from E, 24.12N to E, 23.87N Rational: This erosion feature bond to one particular stratigraphic level in the.
Contact between layered sulfate & clay bearing strata and fluvial channel at Gale crater Latitude/longitude: 4°46'26" S, 137°23'42" E Rationale: Alteration.
Large craters outside the ellipse Long/lat (by decreasing size): E, 24.24N E, 24.30N E, 24.25N E, 24.32N E,
Phyllosilicate-bearing Trough Latitude/longitude: North, East Rationale: The phyllosilicates exposed here may be lacustrine sediments. Morphology.
Large fractures (to be differentiated from the small polygonal fracturation) Long/lat: (no particular order) E, 23.84N E, 23.85N E,
Breccia at Mawrth: polygonal breccia & breccia in elongate pods Latitude/longitude: 1) 24° 8'40"N, 18°53'55"W 2) 24° 8'55"N, 18°53'40"W Rationale: Interesting.
Valleys & inverted valleys in Mawrth Vallis flank Long/lat: E, 24.11N E, 24.06N E, 24.04N E, 23.99N E, 24.17N.
Mound-Skirting Unit Outcrop and Inverted Channel Latitude/longitude: North, East Rationale: This outcrop may be an alluvial fan or part of.
Oyama layered deposits Long/lat: from E, 24.00N to E, 23.20N Rational: Clays have been transported onto the floor of Oyama and deposited as.
Remnant buttes Long/lat: (in random order) E, 23.89N E, 23.95N E, 23.98N E, 24.04N E, 24.05N E, 24.14N.
Ancient eroded layered craters Long/lat : (ranked by distance from ellipse center) E, 24.05N E, 24.01N E, 23.98N E, 23.86N.
1 Lab experiments on phyllosilicates and comparison with CRISM data of Mars Mario Parente, Janice L. Bishop and Javier Cuadros.
Putative paleo sand-sheet Long/lat: from E, 24.11N to E, 23.89N Rational: This structure would indicate a temporary change in the environment.
Layers on floor of Mawrth Vallis Long/lat: from E, 24.20N to E, 23.60N Rational: Understanding the formation of the layered unit, its depositional.
Light-toned paleo-surface Long/lat: E, 23.76N Rational: During the deposition of the layered unit, a layer may have remained at the surface for a.
Composition and Stratigraphy of Acidic or Salty Components at Mawrth Vallis, Mars Janice L. Bishop, Briony Horgan, James J. Wray, Damien Loizeau, Christoph.
Phyllosilicate-bearing outcrop within the Eberswalde Crater landing ellipse Latitude/longitude: North, East Rationale: This brecciated,
Large valleys north of landing site Long/lat: from E, 24.26N to E, 24.58N Rational: Sediments deposited in these valleys may be of utmost interest.
Lowest Strata in Gale Mound (near landing site) Latitude/longitude: 4°47'30"S, 137°17'50”E Rationale: Base of the exposed stratigraphic section for the.
Contact between putative delta and brecciated substrate in western Eberswalde Crater Latitude/longitude: North, East Rationale: Phyllosilicate-bearing,
Eroded Crater at Mawrth: at least 2 generations of fill. Latitude/longitude: 24° 2'20"N, 18°56'20"W (previously proposed but with different rationale)
MAWRTH VALLIS STRATIGRAPHY: A COUPLED OMEGA - HRSC PICTURE D. Loizeau, N. Mangold, F. Poulet, V. Ansan, E. Hauber, J.-P. Bibring, Y. Langevin, B. Gondet,
Lower blue unit Long/lat: E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration, maybe due to hydrothermal.
Embedded Crater at Mawrth: possible crater within stratigraphy in the wall of a younger crater Latitude/longitude: 23°26'55"N, 18°52'20"W Rationale: Provides.
The Mawrth Vallis Phyllosilicates Within a Regional Context: Extent, stratigraphy, and mineralogy of Phyllosilicates around Mawrth Vallis and Western Arabia.
Light-Toned Ridge Latitude/longitude: North, East Rationale: A prominent part of the stratigraphy of the Gale mound, containing phyllosilicates.
New hydrated spectral phase and stratigraphy of smectites, sulfates, and other hydrated minerals in Ius Chasma, Valles Marineris L Roach, JF Mustard, S.
Introduction: The first stage of the exploration of the rim of Endeavour crater by the Mars Exploration Rover (MER) Opportunity concluded with the rover’s.
Mars.  Focus Finding evidence of water on another planet. Using GIS to evaluate likelihood and determine best location.  Lesson Objectives Understand.
2 nd Mars 2020 Landing Site Workshop August 4, 2015 Exploring the Volcanic, Alteration, and Fluvio-Lacustrine History of Early Mars at the Jezero Crater.
THE EBERSWALDE DELTAIC COMPLEX AS A HIGH SCIENCE-RETURN TARGET FOR THE 2009 MARS SCIENCE LABORATORY Juergen Schieber, Department of Geological Sciences,
MSL Science Team Landing Sites Discussions — Gale CraterEdgett, p. 1 Gale Crater MSL Candidate Landing Site in Context by K. Edgett April 2010.
NASA’s Exploration Plan: “Follow the Water” GEOLOGY LIFE CLIMATE Prepare for Human Exploration When Where Form Amount WATER NASA’s Strategy for Mars Exploration.
Mars Science Laboratory 1st Landing Site Workshop Pasadena, CA — 31 May – 2 June Northern Sinus Meridiani Landing Sites for MSL K. S. Edgett and.
Widespread surface weathering on early Mars: A case for a warmer and wetter climate John Carter, Damien Loizeau, Nicolas Mangold, Fraçois Poulet, Jean-
Mineralogy of the Martian Surface Bethany Ehlmann and Christopher Edwards.
East Melas Chasma: Insight into Valles Marineris Matt Chojnacki & Brian Hynek Laboratory for Atmospheric and Space the University of Colorado.
Enabling Capabilities A Robotic Field Geologist Access to a site mapped from orbit Long life, mobility, capability to explore a local region Remote sensing.
Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars Lujendra Ojha et al. Presented by John Hossain 1.
Mars Science Laboratory 1st Landing Site Workshop Pasadena, CA — 31 May – 2 June Fine-layered Meridiani crater for the MSL Landing Site L. V. Posiolova,
SEDIMENTARY ROCKS AND METHANE – SOUTHWEST ARABIA TERRA Carlton Allen and Dorothy Oehler NASA Johnson Space Center Houston, TX Elizabeth Venechuk Scripps.
A Wealth of Opportunities The signature of water is pervasive in and around the proposed ellipse, which resides ~600 km ENE of Opportunity –Ellipse: Over.
TRAVERSE ACROSS LOWER STRATA OF MERIDIANI PLANUM LAYERED DEPOSITS Alan D. Howard Department of Environmental Sciences University of Virginia Jeffrey M.
Mineral identification using CRISM data from Capri Chasma region of Mars K.N. Kusuma Megha Bhatt Prabhjot Kaur Satadru Bhattachraya Hari Nair.
Gale Crater Stratigraphic Measurements and Preliminary Interpretations Ryan Anderson April, 2009.
Geologic History Dissection of Cratered Terrain Deposition of Etched and Hematite layered deposits as volcaniclastic complex (composition?) Aqueous and/or.
Remaining Uncertainties: Little evidence of a shoreline/bench in Eberswalde crater corresponding to the elevation of the delta surface and the spillway.
Introduction: The Mawrth Vallis region has been identified by the Mars Express OMEGA and MRO CRISM instruments as a region with abundant hydrated phyllosilicate.
Fresh Exposures of Hydrous Fe-bearing Amorphous Silicates on Mars
ABI Visible/Near-IR Bands
Preservation of Evidence of Ancient Environments and Life on Mars
R.A. Yingst, F.C. Chuang, D.C. Berman, S.C. Mest
by M. P. Golombek, R. A. Cook, T. Economou, W. M. Folkner, A. F. C
Mawrth Vallis LSWG Hab/BiosigPres, Jen Eigenbrode/ NASA GSFC
Mawrth Candidate Landing Site (Dawn Sumner, July 27, 2010)
Orbital Identification of Carbonate-Bearing Rocks on Mars
During its two-year primary science mission, the Mars Reconnaissance Orbiter will conduct eight different science investigations at Mars. The investigations.
Presentation transcript:

Lower blue unit Long/lat: E, 23.97N Rational: This different mineralogy reveals different conditions of formation/alteration. Morphology & mineralogy: An outcrop in a local low on the flank of Mawrth Vallis shows on HiRISE color images light blue layers underneath the light-red layers rich in Fe/Mg- smectites. It may be the largest outcrop so close to the landing ellipse of different hydrated minerals than the large exposures of the landing site. Other smaller outcrops of the same unit may be exhumed in the vicinity on the flank of Mawrth Vallis. Similar outcrops ~65 km south of the ellipse, on the floor of Mawrth Vallis, show the presence of the sulfate bassanite. MSL tasks: At large scale, study the layering of the outcrop, its fracturation, its relation to upper layers. At small scale, the grain structure, the mineralogy and chemistry of the rocks. HRSC mosaic with HRSC nadir & color images

200 m HiRISE mosaic with HRSC & HiRISE color images A possible interlayered crater is also located at the center of this image.

The quality of the spectral datasets on the flank of Mawrth Vallis is not as good as on the top of the plateau. However this CRISM spectral ratio of the lower blue unit shows a distinct absorption band at 1.9 µm, and a possible weak one at 2.5 µm. The weakness of the bands makes the interpretation difficult, but this outcrop could be related to the Ca- sulfate detection made on the floor of Mawrth Vallis (341.6E, 22.9N) by Wray et al. (2010), also stratigraphically just under the light-red layers rich in Fe/Mg-smectites, and also light-blue on HiRISE color images. From J. Wray