Data Transfer & Decisions I (1) Fall 2005 Lecture 3: MIPS Assembly language Decisions I.

Slides:



Advertisements
Similar presentations
Lecturer PSOE Dan Garcia
Advertisements

CENG 311 Decisions in C/Assembly Language
Lecture 13: 10/8/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
Goal: Write Programs in Assembly
4.
Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 5: Data Transfer Instructions / Control Flow Instructions Partially adapted from Computer.
Chapter 2 Instructions: Language of the Computer
Computer Architecture CSCE 350
cs61c L5 Decisions 9/13/00 1 CS61C - Machine Structures Lecture 5 - Decisions in C/Assembly Language September 13, 2000 David Patterson
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 6 – Introduction to MIPS Data Transfer & Decisions I Pieter Abbeel’s recent.
Chap.2: Instructions: Language of the computer Jen-Chang Liu, Spring 2006 Adapted from
CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L6 Intro MIPS ; Load & Store (1) Garcia, Fall 2005 © UCB Hate EMACS? Love EMACS? Richard M. Stallman, a famous proponent of open- source software,
CS61CL L03 MIPS I: Registers, Memory, Decisions (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Normal C Memory Management °A program’s address space contains 4 regions: stack: local variables, grows downward heap: space requested for pointers via.
CS 61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Elec2041 lec-11-mem-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 11: Memory Access - I
Lecture 4: Loads, Logic, Loops. Review Memory is byte-addressable, but lw and sw access one word at a time. These instructions transfer the contents of.
CS61C L7 MIPS Decisions (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L10 Introduction to MIPS : Decisions II (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Decisions in C/Assembly Language Jen-Chang Liu, Spring 2006 Adapted from
CS61C L7 MIPS: Load & Store, Decisions (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L7 MIPS Decisions (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #7 – MIPS.
CS 61C L07 MIPS Memory (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #7: MIPS Memory & Decisions.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
EEM 486 EEM 486: Computer Architecture Lecture 2 MIPS Instruction Set Architecture.
CS1104 Assembly Language: Part 1
From C to Assembly Language Jen-Chang Liu, Spring 2006 Adapted from
CS61C L09 Introduction to MIPS : Data Transfer and Decisions (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
More decisions and logic (1) Fall 2010 Lecture 4: Loads, Logic, Loops.
MIPS Instruction Set Advantages
9/29: Lecture Topics Memory –Addressing (naming) –Address space sizing Data transfer instructions –load/store on arrays on arrays with variable indices.
Intel has developed a new technique to generate random numbers that is suitable for integration directly into the CPU! This circuit can turn out 2.4 billion.
Topic 8: Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Winter 2010 Prof. Ryan Kastner Dept. of Computer Science and.
CDA 3101 Fall 2012 Introduction to Computer Organization Instruction Set Architecture MIPS Instruction Format 04 Sept 2013.
IT253: Computer Organization Lecture 4: Instruction Set Architecture Tonga Institute of Higher Education.
COSC 2021: Computer Organization Instructor: Dr. Amir Asif Department of Computer Science York University Handout # 3: MIPS Instruction Set I Topics: 1.
IT 251 Computer Organization and Architecture More MIPS Control Instructions Chia-Chi Teng.
CWRU EECS 3221 Language of the Machine EECS 322 Computer Architecture Instructor: Francis G. Wolff Case Western Reserve University.
MIPS coding. Review Shifting – Shift Left Logical (sll) – Shift Right Logical (srl) – Moves all of the bits to the left/right and fills in gap with 0’s.
Chapter 2 Decision-Making Instructions (Instructions: Language of the Computer Part V)
Computer Architecture CSE 3322 Lecture 3 Assignment: 2.4.1, 2.4.4, 2.6.1, , Due 2/3/09 Read 2.8.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 07 Introduction to MIPS : Decisions II Guest Lecturer Alan Christopher.
Assembly Variables: Registers Unlike HLL like C or Java, assembly cannot use variables – Why not? Keep Hardware Simple Assembly Operands are registers.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
MIPS: Load & Store, Decisions. Memory management review Three 3’s Picking blocks off free list  best-, first-, next-fit Attempts to solve external fragmentation.
MIPS Instruction Set Advantages
CS2100 Computer Organisation
Introduction Words of a computer’s language are called its instructions Its vocabulary is its instruction set. Goal: Find a language that makes it easy.
MIPS Coding Continued.
Lecturer SOE Dan Garcia
Instructions for Making Decisions
Lecture 4: MIPS Instruction Set
MIPS Instruction Encoding
ECE232: Hardware Organization and Design
C second, objective-c, Go up!
MIPS Instruction Encoding
Lecturer SOE Dan Garcia
3.
COMS 361 Computer Organization
COMS 361 Computer Organization
COMS 361 Computer Organization
MIPS Assembly.
MIPS Coding Continued.
MIPS assembly.
9/27: Lecture Topics Memory Data transfer instructions
MIPS instructions.
Presentation transcript:

Data Transfer & Decisions I (1) Fall 2005 Lecture 3: MIPS Assembly language Decisions I

Data Transfer & Decisions I (2) Fall 2005 Review In MIPS Assembly Language: Registers replace C variables One Instruction (simple operation) per line Simpler is Better, Smaller is Faster New Instructions: add, addi, sub, li New Registers: C Variables: $s0 - $s7 Temporary Variables: $t0 - $t7 Zero: $zero

Data Transfer & Decisions I (3) Fall 2005 Review MIPS Assembly Language and the SPIM Environment Write your code in MIPS assembly lang in the SPIM editor window (it is one level removed from the tedious machine language) ASSEMBLE: translate to machine language using the SPIM assembler RUN the program under SPIM simulator DEBUG using SPIM debugging window

Data Transfer & Decisions I (4) Fall 2005 Anatomy: 5 components of any Computer Personal Computer Processor Computer Control (“brain”) Datapath Registers MemoryDevices Input Output Load (from) Store (to) These are “data transfer” instructions… Registers are in the datapath of the processor; if operands are in memory, we must transfer them to the processor to operate on them, and then transfer back to memory when done.

Data Transfer & Decisions I (5) Fall 2005 Data Transfer: Memory to Reg (1/4) To transfer a word of data, we need to specify two things: Register: specify this by # ($0 - $31) or symbolic name ($s0,…, $t0, …) Memory address: more difficult -Think of memory as a single one- dimensional array, so we can address it simply by supplying a pointer to a memory address. -Other times, we want to be able to offset from this pointer. Remember: “Load FROM memory”

Data Transfer & Decisions I (6) Fall 2005 Data Transfer: Memory to Reg (2/4) To specify a memory address to copy from, specify two things: A register containing a pointer to memory A numerical offset (in bytes) The desired memory address is the sum of these two values. Example: 8($t0) specifies the memory address pointed to by the value in $t0, plus 8 bytes

Data Transfer & Decisions I (7) Fall 2005 Data Transfer: Memory to Reg (3/4) Load Instruction Syntax: a b,c(d) where a = operation name b = register that will receive value c = numerical offset in bytes d = register containing pointer to memory MIPS Instruction Name: lw (meaning Load Word, so 32 bits or one word are loaded at a time)

Data Transfer & Decisions I (8) Fall 2005 Data Transfer: Memory to Reg (4/4) Example: lw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then load the value from the memory pointed to by this calculated sum into register $t0 Notes: $s0 is called the base register 12 is called the offset offset is generally used in accessing elements of array or structure: base register points to beginning of array or structure Data flow

Data Transfer & Decisions I (9) Fall 2005 Data Transfer: Reg to Memory Also want to store from register into memory Store instruction syntax is identical to Load’s MIPS Instruction Name: sw (meaning Store Word, so 32 bits or one word are loaded at a time) Example: sw $t0,12($s0) This instruction will take the pointer in $s0, add 12 bytes to it, and then store the value from register $t0 into that memory address Remember: “Store INTO memory” Data flow

Data Transfer & Decisions I (10) Fall 2005 Pointers vs. Values Key Concept: A register can hold any 32-bit value. That value can be a (signed) int, an unsigned int, a pointer (memory address), and so on If you write add$t2,$t1,$t0 then $t0 and $t1 better contain values If you write lw $t2,0($t0) then $t0 better contain a pointer Don’t mix these up!

Data Transfer & Decisions I (11) Fall 2005 Addressing: Byte vs. word Every word in memory has an address, similar to an index in an array Early computers numbered words like C numbers elements of an array: Memory[0], Memory[1], Memory[2], … Called the “address” of a word Computers needed to access 8-bit bytes as well as words (4 bytes/word) Today machines address memory as bytes, (i.e.,“Byte Addressed”) hence 32- bit (4 byte) word addresses differ by 4 Memory[0], Memory[4], Memory[8], …

Data Transfer & Decisions I (12) Fall 2005 Compilation with Memory What offset in lw to select A[5] in C? 4x5=20 to select A[5] : byte v. word Compile by hand using registers: g = h + A[5]; g : $s1, h : $s2, base address of A : $s3 1st transfer from memory to register: lw$t0,20($s3) # $t0 gets A[5] Add 20 to $s3 to select A[5], put into $t0 Next add it to h and place in g add $s1,$s2,$t0 # $s1 = h+A[5]

Data Transfer & Decisions I (13) Fall 2005 Notes about Memory Pitfall: Forgetting that sequential word addresses in machines with byte addressing do not differ by 1. Many assembly language programmers have toiled over errors made by assuming that the address of the next word can be found by incrementing the address in a register by 1 instead of by the word size in bytes. So remember that for both lw and sw, the sum of the base address and the offset must be a multiple of 4 (to be word aligned)

Data Transfer & Decisions I (14) Fall 2005 More Notes about Memory: Alignment Aligned Not Aligned MIPS requires that all words start at byte addresses that are multiples of 4 bytes Called Alignment: objects must fall on address that is multiple of their size. 0, 4, 8, or C hex Last hex digit of address is: 1, 5, 9, or D hex 2, 6, A, or E hex 3, 7, B, or F hex

Data Transfer & Decisions I (15) Fall 2005 Role of Registers vs. Memory What if more variables than registers? Compiler tries to keep most frequently used variable in registers Less common in memory: spilling Why not keep all variables in memory? Smaller is faster: registers are faster than memory Registers more versatile: -MIPS arithmetic instructions can read 2, operate on them, and write 1 per instruction -MIPS data transfer only read or write 1 operand per instruction, and no operation

Data Transfer & Decisions I (16) Fall 2005 C Decisions: if Statements 2 kinds of if statements in C if ( condition ) clause if ( condition ) clause1 else clause2 Rearrange 2nd if into following: if ( condition ) goto L1; clause2; goto L2; L1: clause1; L2: Not as elegant as if-else, but same meaning

Data Transfer & Decisions I (17) Fall 2005 MIPS Decision Instructions Decision instruction in MIPS: beq register1, register2, L1 beq is “Branch if (registers are) equal” Same meaning as (using C): if (register1==register2) goto L1 Complementary MIPS decision instruction bne register1, register2, L1 bne is “Branch if (registers are) not equal” Same meaning as (using C): if (register1!=register2) goto L1 Called conditional branches

Data Transfer & Decisions I (18) Fall 2005 MIPS Goto Instruction In addition to conditional branches, MIPS has an unconditional branch: jlabel Called a Jump Instruction: jump (or branch) directly to the given label without needing to satisfy any condition Same meaning as (using C): goto label Technically, it’s the same as: beq $0,$0,label since it always satisfies the condition.

Data Transfer & Decisions I (19) Fall 2005 Compiling C if into MIPS (1/2) Compile by hand if (i == j) f=g+h; else f=g-h; Use this mapping: f : $s0 g : $s1 h : $s2 i : $s3 j : $s4 Exit i == j? f=g+hf=g-h (false) i != j (true) i == j

Data Transfer & Decisions I (20) Fall 2005 Compiling C if into MIPS (2/2) Final compiled MIPS code: beq $s3,$s4,True # branch i==j sub $s0,$s1,$s2 # f=g-h(false) j Fin # goto Fin True: add $s0,$s1,$s2 # f=g+h (true) Fin: Note: Compiler automatically creates labels to handle decisions (branches). Generally not found in HLL code. Exit i == j? f=g+hf=g-h (false) i != j (true) i == j Compile by hand if (i == j) f=g+h; else f=g-h;

Data Transfer & Decisions I (21) Fall 2005 “And in Conclusion…” Memory is byte-addressable, but lw and sw access one word at a time. A pointer (used by lw and sw ) is just a memory address, so we can add to it or subtract from it (using offset). A Decision allows us to decide what to execute at run-time rather than compile-time. C Decisions are made using conditional statements within if, while, do while, for. MIPS Decision making instructions are the conditional branches: beq and bne. New Instructions: lw, sw, beq, bne, j