Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Dynamics of repulsively bound pairs in fermionic Hubbard model David Pekker, Harvard University Rajdeep Sensarma, Harvard University Ehud Altman, Weizmann.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Experimental study of universal few-body physics with ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel Laboratoire.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Efimov Physics in a Many-Body Background
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
The 4th Yamada Symposium Advanced Photons and Science Evolution
An atomic Fermi gas near a p-wave Feshbach resonance
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Chapter 7 in the textbook Introduction and Survey Current density:
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Novel quantum states in spin-orbit coupled quantum gases
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Presentation transcript:

Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans

Three-Component Fermi Gases Many-body physics in a 3-State Fermi Gas –Mechanical stability with resonant interactions an open question –Novel many-body phases Competition between different Cooper pairs Competition between Cooper pairing and 3-body bound states Analog to Color Superconductivity and Baryon Formation in QCD Polarized 3-state Fermi gases: Imbalanced Fermi surfaces Novel Cooper pairing mechanisms Analogous to mass imbalance of quarks

QCD Phase Diagram C. Sa de Melo, Physics Today, Oct. 2008

Simulating the QCD Phase Diagram Rapp, Hofstetter & Zaránd, PRB 77, (2008) Color Superconducting-to-“Baryon” Phase Transition 3-state Fermi gas in an optical lattice –Rapp, Honerkamp, Zaránd & Hofstetter, PRL 98, (2007) A Color Superconductor in a 1D Harmonic Trap –Liu, Hu, & Drummond, PRA 77, (2008)

Universal Three-Body Physics The Efimov Effect in a Fermi system –Three independent scattering lengths –More complex than Efimov’s original scenario –New phenomena (e.g. exchange reactions) Importance to many-body phenomena –Two-body and three-body physics completely described –Three-body recombination rate determines stability of the gas

Three-State 6 Li Fermi Gas Hyperfine States of 6 Li

No Spin-Exchange Collisions –Energetically forbidden (in a bias field) Minimal Dipolar Relaxation –Suppressed at high B-field Electron spin-flip process irrelevant in electron-spin-polarized gas Three-Body Recombination –Allowed in a 3-state mixture –(Exclusion principle suppression for 2-state mixture) Inelastic Collisions

Making and Probing 3-State Mixtures Magnetic Field (Gauss) Radio-frequency magnetic fields drive transitions Spectroscopically resolved absorption imaging

The Resonant QM 3-Body Problem Vitaly Efimov circa 1970 (1970) Efimov: An infinite number of bound 3-body states for A single 3-body parameter: Inner wall B.C. determined by short-range interactions Infinitely many 3-body bound states (universal scaling): · ·. ·

QM 3-Body Problem for Large a (1970 & 1971) Efimov: Identical Bosons in Universal Regime Note: Only two free parameters: Log-periodic scaling: E. Braaten, et al. PRL 103, & Diagram from: E. Braaten & H.-W. Hammer, Ann. Phys. 322, 120 (2007) Observable for a < 0: Enhanced 3-body recombination rate at

Universal Regions in 6 Li

The Threshold Regime and the Unitarity Limit Universal predictions only valid at threshold –Collision Energy must be small Smallest characteristic energy scale Comparison to theory requires low temperature and low density (for fermions) Recombination rate unitarity limited in a thermal gas

Making Fermi Gases Cold Evaporative Cooling in an Optical Trap Optical Trap Formed from two 1064 nm, 80 Watt laser beams Create incoherent 3-state mixture –Optical pumping into F=1/2 ground state –Apply two RF fields in presence of field gradient

Making Fermi Gases Ultracold Adiabatically Release Gas into a Larger Volume Trap

Low Field Loss Features Resonances in the 3-Body Recombination Rate! Resonance T. B. Ottenstein et al., PRL 101, (2008).J. H. Huckans et al., PRL102, (2009).

Measuring 3-Body Rate Constants Loss of atoms due to recombination: Evolution assuming a thermal gas at temperature T : “Anti-evaporation” and recombination heating:

Recombination Rate in Low-Field Region

P. Naidon and M. Ueda, PRL 103, (2008). E. Braaten et al., PRL 103, (2009). S. Floerchinger, R. Schmidt, and C. Wetterich, Phys. Rev. A 79, (2009)

Recombination Rate in Low-Field Region P. Naidon and M. Ueda, PRL 103, (2008). E. Braaten et al., PRL 103, (2009). S. Floerchinger, R. Schmidt, and C. Wetterich, Phys. Rev. A 79, (2009) Better agreement if  * tunes with magnetic field – A. Wenz et al., arXiv: (2009).

Efimov Trimer in Low-Field Region

3-Body Recombination in High Field Region

Determining the Efimov Parameters using calculations from E. Braaten et al., PRL 103, (2009).

Determining the Efimov Parameters using calculations from E. Braaten et al., PRL 103, (2009).

Determining the Efimov Parameters using calculations from E. Braaten et al., PRL 103, (2009).

Efimov Trimers in High-Field Region also predicts 3-body loss resonances at 125(3) and 499(2) G

3-Body Observables in High Field Region from E. Braaten, H.-W. Hammer, D. Kang and L. Platter, arXiv (2009).

Prospects for Color Superfluidity Color Superfluidity in a Lattice (increased density of states) –T C = 0.2 T F (in a lattice with d = 2  m, V 0 = 3 E R ) –Atom density ~10 11 /cc –Atom lifetime ~ 200 ms ( K 3 ~ 5 x cm 6 /s) –Timescale for Cooper pair formation

Summary Observed variation of three-body recombination rate by 8 orders of magnitude Experimental evidence for ground and excited state Efimov trimers in a three-component Fermi gas Observation of Efimov resonance near three overlapping Feshbach resonances Determined three-body parameters in the high field regime which is well described by universality The value of  * is nearly identical for the high-field and low-field regions despite crossing non-universal region Three-body recombination rate is large but does not necessarily prohibit future studies of many-body physics

Fermi Gas Group at Penn State Ken O’Hara John Huckans Ron Stites Eric Hazlett Jason Williams Yi Zhang

Future Prospects Efimov Physics in Ultracold Atoms –Direct observation of Efimov Trimers –Efimov Physics (or lack thereof) in lower dimensions Many-body phenomena with 3-Component Fermi Gases