Searches for Dark Matter (the Quest) Harry Nelson UCSB 2003 SLAC Summer Insitute Aug. 5-6 2003.

Slides:



Advertisements
Similar presentations
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
Advertisements

EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
The PICASSO experiment - searching for cold dark matter
Background issues for the Cryogenic Dark Matter Search Laura Baudis Stanford University.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
Bubble Chambers: Old Tools In New Searches For Dark Matter Geoffrey Iwata Physics /16/10.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
12/9/04KICP - Spin Dependent Limits 1 Can WIMP Spin Dependent Couplings explain DAMA? Limits from DAMA and Other Experiments Christopher M. Savage University.
Proportional Light in a Dual Phase Xenon Chamber
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
What’s the Matter in the Universe? Richard Schnee Syracuse University Quarknet Lecture July 13, 2012 The Search for Dark Matter.
1 Searching For Dark Matter in the Universe: Direct (indirect) methods for the detection of Weakly Interacting Massive Particles (WIMPs) Nader Mirabolfathi.
Luminous Dark Matter Brian Feldstein arXiv: B.F., P. Graham and S. Rajendran.
Form Factor Dark Matter Brian Feldstein Boston University In Preparation -B.F., L. Fitzpatrick and E. Katz In Preparation -B.F., L. Fitzpatrick, E. Katz.
A Direction Sensitive Dark Matter Detector
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
Dark Matter Search with Direction sensitive Scintillator Ⅱ Department of Physics, School of Science The University of Tokyo Y. Shimizu, M. Minowa, Y. Inoue.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
Direct Dark Matter Searches
 Dark matter forms a giant sea, enclosing the milky way. The earth and solar system like a small fish, swimming in it.  Dark Matter particle has a small.
Gaitskell Majorana - DM Summary of Issues Rick Gaitskell Brown University, Department of Physics see information at v8.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
A large water shield for dark matter, double beta decay and low background screening. T. Shutt - Case R. Gaitskell - Brown.
Gaitskell Towards One Tonne WIMP Direct Detectors: Have we got what it takes? (CryoArray) Rick Gaitskell Department of Physics & Astronomy University College.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
CDMS IIUCSB Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss) ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara.
Gaitskell “High Energy Neutrons” Background in Dark Matter Search Experiments Rick Gaitskell Brown University, Department of Physics see information at.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
Search for Cosmic Dark Matter at CDMS Laura Baudis Stanford University SLAC Topical Conference, August 16, 02.
Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
Gaitskell CDMS II Status + CDMS I / III / CryoArray Direct Detection of SUSY Cold Dark Matter Rick Gaitskell Brown University, Department of Physics see.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
ZEPLIN I: First limits on nuclear recoil events Vitaly A. Kudryavtsev Department of Physics and Astronomy University of Sheffield, UK For the UK Dark Matter.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Gaitskell CDMS I + II + CryoArray Status Direct Detection of SUSY Cold Dark Matter Rick Gaitskell Brown University, Department of Physics see information.
Results from the Full Analysis of CDMS Data Runs Richard Schnee Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
DARK MATTER SEARCH Carter Hall, University of Maryland.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
Detecting the Directionality of Dark Matter via “Columnar Recombination” (CR) Technique An attractive, natural candidate for Dark Matter is the WIMP –
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Scintillating Bubble Chambers for Direct Dark Matter Detection Jeremy Mock On behalf of the UAlbany and Northwestern Groups 1.
18-20 May 2015, Underground Science Conference, SDSM&T 1John Harton, Colorado State University Recent Results from the DRIFT Directional DM Experiment.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
From Edelweiss I to Edelweiss II
Christopher M. Savage Fine Theoretical Physics Institute
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Christopher M. Savage University of Michigan – Ann Arbor
LUX: A Large Underground Xenon detector WIMP Search
Detecting WIMPs using Au-DNA Microarrays
Presentation transcript:

Searches for Dark Matter (the Quest) Harry Nelson UCSB 2003 SLAC Summer Insitute Aug

UCSBHNN 8/6/03 SLAC Summer Institute 2 Recap - Direct Detection Shield (shield radioactive too!)… 1 ev/(kg d keV) typical  Reduce the background… HDMS, IGEX, Genius  Exploit astron. propert. (year cycle, directionality) DAMA, DRIFT  Devise detectors that can distinguish nuclear recoil from electron recoil… Edelweiss, CDMS, Xenon.. How to dredge the small (0.01 DRU= ev/(kg d keV)) up out of a bigger background (1 DRU typical) of recoil electrons from comptons? Indirect Detection (milli-) Charged Massive Particles Closing

UCSBHNN 8/6/03 SLAC Summer Institute 3  v DM  1/2  300 km/s 2  v DM  1/2 =0 km/s 2 Annual Modulation in Rate `Usual Simplification’: Halo particles are at rest, on average Sun moves through Halo - `apparent’ wind Earth modulates `wind’ velocity yearly Peak-to-peak up to 40% DAMA at Gran Sasso Fig. from DRIFT

UCSBHNN 8/6/03 SLAC Summer Institute 4 Daily Modulation in Direction Recoiling Nucleus Follows the Initial WIMP Direction… the `wind’ Detector gaseous to reconstruct recoil direction DRIFT at Boulby (Spooner) Fig. from DRIFT

UCSBHNN 8/6/03 SLAC Summer Institute 5 DAMA – 100 kg of NaI Iodine, A=127 E obs (KeV ee )  0.09 E recoil (KeV) Sodium, A=23 E obs (KeV ee )  0.25 E recoil (KeV) E recoil  Light NaI PMT Copper Lead Poly

UCSBHNN 8/6/03 SLAC Summer Institute 6 through 2000 … 4  DAMA Background and Signal through 2003 … 6.3  Bernabei et al., astro-ph/ Energy Spectrum Bkgd  1 cpd/kg/keV 2-6 KeV 8-24 KeV Na(23) KeV I(127)   cpd/kg/keV

UCSBHNN 8/6/03 SLAC Summer Institute 7 DAMA noise... >1 pe threshold <10 -4 cpd...

UCSBHNN 8/6/03 SLAC Summer Institute 8 DAMA Allowed Regions through 2003through 2000 (standard halo)  p (cm 2 ),  =  0 /  Variation mainly due to changes in halo parameters two plots not directly comparable (different halos used) With new result, DAMA ceases to employ `standard Maxwellian halo’ - comparisons challenging Na I 33 44

UCSBHNN 8/6/03 SLAC Summer Institute 9 Halo Variation Kamionkowski and Kinkhabwala (1997)

UCSBHNN 8/6/03 SLAC Summer Institute 10 Perhaps WIMP couples not to nucleons, but to their spin S,V,T,A,P  S,A non-relativistic (V too) S - `nucleon, SI’ (or V) … A - `spin or SD’ (also, could break isospin… n  p) A 2   2 J(J+1) DAMA J  0  unpaired nucleon, odd A NAIAD (Boulby) (couple to proton spin)  p (cm 2 ) Couple to neutron spin LIBRA 250kg, NAIAD continues, ANAIS in Spain...

UCSBHNN 8/6/03 SLAC Summer Institute 11 00 v/c  7  Nucleus Recoils Dense Energy Deposition v/c small; Bragg Discrimination of Recoils Signal ErEr  v/c  0.3 Electron Recoils Background Sparse Energy Deposition ErEr Differences the Basis of Discrimination

UCSBHNN 8/6/03 SLAC Summer Institute 12 Simulation (by DRIFT) 40 keV Ar in 1/20 atm Ar13 keV e - in 1/20 atm Ar 5 cm Ar pushes other Ar atoms, none go very far. Electron pushes other electrons, all go far

UCSBHNN 8/6/03 SLAC Summer Institute 13 dE/dx for different recoils Strategies Detector insensitive to small dE/dx (track etch, SDD) Convert E to two distinct measured quantities that look different depending on whether nuclear recoil or electron.

UCSBHNN 8/6/03 SLAC Summer Institute 14 Track Etch Detectors Mica, CR39 Struck Nucleus Large dE/dx 100 Å Corrosive Etch Ancient Mica 0.5  10 9 yr Exposure fraction mm 2 area

UCSBHNN 8/6/03 SLAC Summer Institute 15 Mica Result 58% 16 O 16% 28 Si 12% 27 Al 5% 39 K  p (cm 2 )  cm 2 SD: cm 2 Snoden-Ifft, Freeman, Price (1994)

UCSBHNN 8/6/03 SLAC Summer Institute 16 Superheated Droplet Detector (SDD) 10  m Gelatin Target, C 2 ClF 5 (Liquid): Temp. > Boiling 00 Spin Dependent 15 gm Collar et al., (2000) cm 2 

UCSBHNN 8/6/03 SLAC Summer Institute 17 Lose the Gelatin… get all Target Really a bubble chamber... CF 3 Br Juan Collar and Andrew Sonnenschein (poster session)

UCSBHNN 8/6/03 SLAC Summer Institute 18 NaI Distinct Quantities to Measure tt Gerbier et al., keV Liquid Xenon Also a scintillator (Spooner) e - recoils from  ’s Nuclear recoils From neutrons  t  (ns)  ’s ( keV E R ) Width of pulse DAMA does not use this NaI E R : KeV (I) 1)Time Structure of the Pulse 2)Pulse Height/Area via: a)Ionization (like Ge) b)Scintillation (like NaI) c)Heat/Phonons d)Physical Size of Ionization

UCSBHNN 8/6/03 SLAC Summer Institute 19 to electrons Distinguishing Nuclear Recoil Nuclear recoil energy lost mainly to collisions with other nuclei  Nuclear recoils deposit lots of energy in lattice excitations: phonons... heat Nuclear motion poor at causing electronic excitation, ionization

UCSBHNN 8/6/03 SLAC Summer Institute 20 Simultaneous Measurement of Phonons(Heat) + Ionization Temperature-20 mK   Temp)/  (Energy)  Temp)  NTD Ge  Slow (10’s ms) Ionization - E applied E Background (e - from  ) … strong ionization signal… equal phonon signal (!) Nuclear recoil… reduced (by 1/4) ionization signal, strong phonon signal Edelweiss

UCSBHNN 8/6/03 SLAC Summer Institute 21 Separation of Nuclear Recoil from e - Recoil Shutt et al., 1992 Nuclear recoils (induced by a neutron source) Electron recoils (induced by a  source) Slope really 1! Ionization Phonons =1 (bkgd)  1/3 (sig) E gap = 3/4 eV w = 3 eV

UCSBHNN 8/6/03 SLAC Summer Institute 22 Edelweiss (depth: 4500 mwe) 0.32 kg/ Ge detector 3×0.32kg Germanium Detectors Roman Lead L. Chabert, EPS `03 Aachen

UCSBHNN 8/6/03 SLAC Summer Institute 23 Edelweiss Data:  ’s Suppressed by 1000 ● 7.51 kg.d exposure (fiducial volume) ● Best charg. channel : 1 keV (FWHM) ● 20 keV threshold ● 3.72 kg.d (fiduc.) ● Smaller exposure due to electronics problems ● 30 keV threshold ● kg.d (fiducial) ● Good phonon channel 300 eV (FWHM) resolution during most of the runs ● Noisy charge channel ● 30 keV threshold Bolometer 1Bolometer 2 Bolometer 3   L. Chabert, EPS `03 Aachen

UCSBHNN 8/6/03 SLAC Summer Institute 24 Betas... Germanium Electrode Implants E  External  Ionization electrons get trapped in this electrode Those electrons never drift over to the other electrode… ionization signal reduced… but, all the phonons/heat still present… (ionization)/(phonons) < 1 z CDMS effort: measure z

UCSBHNN 8/6/03 SLAC Summer Institute 25 Edelweiss and other’s results CDMS no background subtraction hep- ex/ kg-days (Ge, phonon/ion.) CDMS with background subtraction hep- ex/ kg-days (Ge, phonon/ion.) ZEPLIN I (preliminary) 230 kg-days (Liq Xe) EDELWEISS 2003 no background subtraction 31 kg-days (Ge, phonon/ion.) L. Chabert, EPS `03 Aachen DAMA/Edelweiss inconsistent at 99.9% not accounting for differential systematics

UCSBHNN 8/6/03 SLAC Summer Institute 26 CDMS: not as deep… neutron background 17 mwe Detectors Inner Pb shield Polyethylene Pb Shield Active Muon Veto Fridge Copper   n n n R. Schnee... Experiment moved to Soudan, 2100 mwe depth

UCSBHNN 8/6/03 SLAC Summer Institute 27 CDMS Layout, Data ZIP 1 (Ge) ZIP 2 (Ge) ZIP 3 (Ge) ZIP 4 (Si) ZIP 5 (Ge) ZIP 6 (Si) SQUID cards FET cards 4 K 0.6 K 0.06 K 0.02 K 4 Germanium Detectors (0.66 kg total) 2 Silicon Detectors (0.2 kg total)  Small DM rate, high neutron rate Nuclear Recoils Surface electrons  Z1 (  ) or Z5 (+) 1/5000  ’s misid’ed as nuclear recoils R. Schnee 8 cm

UCSBHNN 8/6/03 SLAC Summer Institute 28 Technology of `ZIP’s (Z for z) Al quasiparticle trap Al Collector W Transition-Edge Sensor (TES) Si or Ge quasiparticle diffusion phonons Very different from Edelweiss, although the objective is the same… the `phono-cathode’ Cooper Pair superconducting normal T (mK) T c ~ 80mK R TES (  ) ~ 10mK Signal much faster - microseconds 3-d imaging (Z) R. Schnee

UCSBHNN 8/6/03 SLAC Summer Institute 29 The ZIP Phono`cathode’... 1  tungsten 380  x 60  aluminum fins 4 segments + timing to get x,y on the face rise time to get z, into the face R. Schnee

UCSBHNN 8/6/03 SLAC Summer Institute 30 ZIP Surface Electron Rejection Neutrons from 252 Cf source (Single-scatter) photons from 60 Co Source Surface- electron recoils (selected via nearest- neighbor multiple scatters from 60 Co source) Accept Reject Surface electrons still likely to be the limiting background R. Schnee

UCSBHNN 8/6/03 SLAC Summer Institute 31 CDMS Expected Background Levels CDMS-II Proposal In DRU, ev/kg/kev/day a bit dated;  now X10 better, surface electron X2 better

UCSBHNN 8/6/03 SLAC Summer Institute 32 Catalog of Recoil Experiments Rick Gaitskell

UCSBHNN 8/6/03 SLAC Summer Institute 33 Future Performances Rick Gaitskell

UCSBHNN 8/6/03 SLAC Summer Institute 34 Prognostication

UCSBHNN 8/6/03 SLAC Summer Institute 35 A Proposal… 5 billion years ago… (indirect DM detection) Get protons in a sphere (ignite to enable a neutrino program) Wait for WIMPs to collect (spin-dependent cross section - proton’s spin) Detect on a nearby iron ball via the annihilation of WIMPs (with themselves) to neutrinos Review Panel’s Recommendations/Queries: 1)What if WIMP’s don’t self annihilate… no answer 2) Hey, you’re `iron ball’ is great for collecting WIMPS via spin-independent scattering, since A of Iron is big (54)! (thanks) 3) Funding for preliminary studies... 

UCSBHNN 8/6/03 SLAC Summer Institute 36 Study Results... For SUSY WIMPs… 1) Sun, rate bottleneck is capture not annihilation 2) Earth, situation reversed 3) `Relative Efficiency’ function of WIMP mass Earth… best when WIMP mass same as Iron mass… same reason hydrogen is the best neutron moderator Sun lower masses… little capture

UCSBHNN 8/6/03 SLAC Summer Institute 37 Solar/Earth Comparison Annihilation Rate in Earth is Earth Bottleneck Capture Rate in Earth is Earth Bottlneck (for detector on Earth) (WIMP models for spin/scalar comparison)

UCSBHNN 8/6/03 SLAC Summer Institute 38 Super-Kamiokande’s Results... Upward going muons Desai, IDM 02

UCSBHNN 8/6/03 SLAC Summer Institute 39 Transcribe to the Direct Detection Plot Model dependent… but less so than I thought. Spin-dependent (Sun) Scalar (Earth) Desai, IDM 02

UCSBHNN 8/6/03 SLAC Summer Institute 40 Future Indirect Detectors (neutrino) Feng, Matchev, Wilczek 2000

UCSBHNN 8/6/03 SLAC Summer Institute 41 Cosmic Positrons - Halo WIMP annililation HEAT… terrific balloon experiment… saw an excess Edsjo, IDM 02

UCSBHNN 8/6/03 SLAC Summer Institute 42 Positron Future…  ’s too Feng, Matchev, Wilczek 2000

UCSBHNN 8/6/03 SLAC Summer Institute 43 m (GeV) Davidson, Hannestad, Raffelt, hep-ph/ Charge Fraction Excluded Regions Milli-CHAMP Limits Overclose Universe (Thermal)

UCSBHNN 8/6/03 SLAC Summer Institute 44 Stable CHAMPs in Matter Perl et al., hep-ph/ DM, stop in earth

UCSBHNN 8/6/03 SLAC Summer Institute 45 Some conclusions Rutherford/Chadwick hunted neutron for 12 years  Hints first seen on continent, interpreted as photons… Neutrino studies started about 90 years ago…  Masses? Majorana? Still not fully nailed down... Dark Matter…  Prepare for a long ride… no physical law guarantees that discoveries happen within any human’s lifetime  The only guarantee: if we fail to look, we will fail to find.