1 Lecture 3 Uninformed Search

Slides:



Advertisements
Similar presentations
Artificial Intelligent
Advertisements

Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
Additional Topics ARTIFICIAL INTELLIGENCE
Review: Search problem formulation
Uninformed search strategies
Lecture 3: Uninformed Search
Problem Solving Agents A problem solving agent is one which decides what actions and states to consider in completing a goal Examples: Finding the shortest.
1 Lecture 3 Uninformed Search. 2 Uninformed search strategies Uninformed: While searching you have no clue whether one non-goal state is better than any.
Solving Problems by Searching Currently at Chapter 3 in the book Will finish today/Monday, Chapter 4 next.
Uninformed (also called blind) search algorithms) This Lecture Chapter Next Lecture Chapter (Please read lecture topic material before.
Properties of breadth-first search Complete? Yes (if b is finite) Time? 1+b+b 2 +b 3 +… +b d + b(b d -1) = O(b d+1 ) Space? O(b d+1 ) (keeps every node.
CS 480 Lec 3 Sept 11, 09 Goals: Chapter 3 (uninformed search) project # 1 and # 2 Chapter 4 (heuristic search)
Blind Search1 Solving problems by searching Chapter 3.
Search Strategies Reading: Russell’s Chapter 3 1.
May 12, 2013Problem Solving - Search Symbolic AI: Problem Solving E. Trentin, DIISM.
1 Chapter 3 Solving Problems by Searching. 2 Outline Problem-solving agentsProblem-solving agents Problem typesProblem types Problem formulationProblem.
Solving Problem by Searching Chapter 3. Outline Problem-solving agents Problem formulation Example problems Basic search algorithms – blind search Heuristic.
Search Search plays a key role in many parts of AI. These algorithms provide the conceptual backbone of almost every approach to the systematic exploration.
1 Lecture 3 Uninformed Search. 2 Uninformed search strategies Uninformed: While searching you have no clue whether one non-goal state is better than any.
Solving problems by searching Chapter 3. Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms.
1 Lecture 3: 18/4/1435 Uninformed search strategies Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Touring problems Start from Arad, visit each city at least once. What is the state-space formulation? Start from Arad, visit each city exactly once. What.
Artificial Intelligence for Games Uninformed search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
EIE426-AICV 1 Blind and Informed Search Methods Filename: eie426-search-methods-0809.ppt.
Artificial Intelligence (CS 461D)
Uninformed (also called blind) search algorithms This Lecture Read Chapter Next Lecture Read Chapter (Please read lecture topic material.
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
UNINFORMED SEARCH Problem - solving agents Example : Romania  On holiday in Romania ; currently in Arad.  Flight leaves tomorrow from Bucharest.
Artificial Intelligence Lecture No. 7 Dr. Asad Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Artificial Intelligence for Games Depth limited search Patrick Olivier
14 Jan 2004CS Blind Search1 Solving problems by searching Chapter 3.
CHAPTER 3 CMPT Blind Search 1 Search and Sequential Action.
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
CS 380: Artificial Intelligence Lecture #3 William Regli.
Review: Search problem formulation
Searching the search space graph
Artificial Intelligence Chapter 3: Solving Problems by Searching
1 Lecture 3 Uninformed Search. 2 Complexity Recap (app.A) We often want to characterize algorithms independent of their implementation. “This algorithm.
Lecture 3 Uninformed Search.
Review: Search problem formulation Initial state Actions Transition model Goal state (or goal test) Path cost What is the optimal solution? What is the.
Artificial Intelligence
AI in game (II) 권태경 Fall, outline Problem-solving agent Search.
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Prof. Carla P. Gomes Module: Search I (Reading R&N: Chapter.
Lecture 3: Uninformed Search
An Introduction to Artificial Intelligence Lecture 3: Solving Problems by Sorting Ramin Halavati In which we look at how an agent.
SOLVING PROBLEMS BY SEARCHING Chapter 3 August 2008 Blind Search 1.
A General Introduction to Artificial Intelligence.
1 Solving problems by searching Chapter 3. Depth First Search Expand deepest unexpanded node The root is examined first; then the left child of the root;
Solving problems by searching 1. Outline Problem formulation Example problems Basic search algorithms 2.
1 search CS 331/531 Dr M M Awais REPRESENTATION METHODS Represent the information: Animals are generally divided into birds and mammals. Birds are further.
Pengantar Kecerdasan Buatan
Uninformed search strategies A search strategy is defined by picking the order of node expansion Uninformed search strategies use only the information.
Problem Solving as Search. Problem Types Deterministic, fully observable  single-state problem Non-observable  conformant problem Nondeterministic and/or.
Uninformed Search Methods
Problem Solving by Searching
Uninformed (also called blind) search algorithms This Lecture Read Chapter Next Lecture Read Chapter (Please read lecture topic material.
Implementation: General Tree Search
Solving problems by searching A I C h a p t e r 3.
Search Part I Introduction Solutions and Performance Uninformed Search Strategies Avoiding Repeated States Partial Information Summary.
WEEK 5 LECTURE -A- 23/02/2012 lec 5a CSC 102 by Asma Tabouk Introduction 1 CSC AI Basic Search Strategies.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Artificial Intelligence Solving problems by searching.
Lecture 3: Uninformed Search
Uninformed (also called blind) search algorithms)
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Uninformed Search Chapter 3.4.
Uninformed Search Strategies
Solving problems by searching
Artificial Intelligence
Presentation transcript:

1 Lecture 3 Uninformed Search

2 Complexity Recap (app.A) We often want to characterize algorithms independent of their implementation. “This algorithm took 1 hour and 43 seconds on my laptop”. Is not very useful, because tomorrow computers are faster. Better is: “This algorithm takes O(nlog(n)) time to run and O(n) to store”. because this statement is abstracts away from irrelevant details. Time(n) = O(f(n)) means: Time(n) n0 for some n0 Space(n) idem. n is some variable which characterizes the size of the problem, e.g. number of data-points, number of dimensions, branching-factor of search tree, etc. Worst case analysis versus average case analyis

3 Uninformed search strategies Uninformed: While searching you have no clue whether one non-goal state is better than any other. Your search is blind. Various blind strategies: Breadth-first search Uniform-cost search Depth-first search Iterative deepening search

4 Breadth-first search Expand shallowest unexpanded node Implementation: fringe is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the queue. Is A a goal state?

5 Breadth-first search Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end Expand: fringe = [B,C] Is B a goal state?

6 Breadth-first search Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end Expand: fringe=[C,D,E] Is C a goal state?

7 Breadth-first search Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end Expand: fringe=[D,E,F,G] Is D a goal state?

8 Example BFS

9 Properties of breadth-first search Complete? Yes it always reaches goal (if b is finite) Time? 1+b+b 2 +b 3 +… +b d + (b d+1 -b)) = O(b d+1 ) (this is the number of nodes we generate) Space? O(b d+1 ) (keeps every node in memory, either in fringe or on a path to fringe). Optimal? Yes (if we guarantee that deeper solutions are less optimal, e.g. step-cost=1). Space is the bigger problem (more than time)

10 Uniform-cost search Breadth-first is only optimal if step costs is increasing with depth (e.g. constant). Can we guarantee optimality for any step cost? Uniform-cost Search: Expand node with smallest path cost g(n).

11 Uniform-cost search Implementation: fringe = queue ordered by path cost Equivalent to breadth-first if all step costs all equal. Complete? Yes, if step cost ≥ ε (otherwise it can get stuck in infinite loops) Time? # of nodes with path cost ≤ cost of optimal solution. Space? # of nodes on paths with path cost ≤ cost of optimal solution. Optimal? Yes, for any step cost.

12 Depth-first search Expand deepest unexpanded node Implementation: fringe = Last In First Out (LIPO) queue, i.e., put successors at front Is A a goal state?

13 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[B,C] Is B a goal state?

14 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[D,E,C] Is D = goal state?

15 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[H,I,E,C] Is H = goal state?

16 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[I,E,C] Is I = goal state?

17 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[E,C] Is E = goal state?

18 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[J,K,C] Is J = goal state?

19 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[K,C] Is K = goal state?

20 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[C] Is C = goal state?

21 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[F,G] Is F = goal state?

22 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[L,M,G] Is L = goal state?

23 Depth-first search Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front queue=[M,G] Is M = goal state?

24 Example DFS

25 Properties of depth-first search Complete? No: fails in infinite-depth spaces Can modify to avoid repeated states along path Time? O(b m ) with m=maximum depth terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first Space? O(bm), i.e., linear space! (we only need to remember a single path + expanded unexplored nodes) Optimal? No (It may find a non-optimal goal first)

26 Iterative deepening search To avoid the infinite depth problem of DFS, we can decide to only search until depth L, i.e. we don’t expand beyond depth L.  Depth-Limited Search What of solution is deeper than L?  Increase L iteratively.  Iterative Deepening Search As we shall see: this inherits the memory advantage of Depth-First search.

27 Iterative deepening search L=0

28 Iterative deepening search L=1

29 Iterative deepening search lL=2

30 Iterative deepening search lL=3

31 Iterative deepening search Number of nodes generated in a depth-limited search to depth d with branching factor b: N DLS = b 0 + b 1 + b 2 + … + b d-2 + b d-1 + b d Number of nodes generated in an iterative deepening search to depth d with branching factor b: N IDS = (d+1)b 0 + d b 1 + (d-1)b 2 + … + 3b d-2 +2b d-1 + 1b d = For b = 10, d = 5, N DLS = , , ,000 = 111,111 N IDS = , , ,000 = 123,450 N BFS = = 1,111,100 BFS

32 Properties of iterative deepening search Complete? Yes Time? (d+1)b 0 + d b 1 + (d-1)b 2 + … + b d = O(b d ) Space? O(bd) Optimal? Yes, if step cost = 1 or increasing function of depth.

33 Example IDS

34 Bidirectional Search Idea simultaneously search forward from S and backwards from G stop when both “meet in the middle” need to keep track of the intersection of 2 open sets of nodes What does searching backwards from G mean need a way to specify the predecessors of G this can be difficult, e.g., predecessors of checkmate in chess? what if there are multiple goal states? what if there is only a goal test, no explicit list?

35 Bi-Directional Search Complexity: time and space complexity are:

36 Summary of algorithms

37 Repeated states Failure to detect repeated states can turn a linear problem into an exponential one!

38 Solutions to Repeated States Method 1 do not create paths containing cycles (loops) Method 2 never generate a state generated before must keep track of all possible states (uses a lot of memory) e.g., 8-puzzle problem, we have 9! = 362,880 states S B C S BC SCBS State Space Example of a Search Tree suboptimal but practical optimal but memory inefficient

39 Summary Problem formulation usually requires abstracting away real- world details to define a state space that can feasibly be explored Variety of uninformed search strategies Iterative deepening search uses only linear space and not much more time than other uninformed algorithms (for more demos)