טרנזיסטורים מולקולאריים וגלאים (sensors) - מחקר טכנולוגי S. Moshe, S. Toledano, K. Finkelstein, R. Sarfaty, S. Richter, S. Stolyarova, and Y. Nemirovsky.

Slides:



Advertisements
Similar presentations
(and briefly, Electrodeposition)
Advertisements

Nanoscience, Nanotechnology and Nanomanufacturing Exciting new science and technology for the 21st century.
NEW SENSING DEVICES FOR IMPROVING THE QUALITY OF LIFE Interest in FP 6 call: 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials.
Aamer Mahmood Donald P. Butler Zeynep Çelik-Butler
1 FUEL CELLS IN ORT BRAUDE July 05 – July 06 Lea MorEugenia Bubis Nissim SabagZeev Rubin Rona SarfatyEhud Kroll Pinchas Schechner Vladimir Chechik.
IWORID 2004, University of Glasgow 30  m Spacing 519-Electrode Arrays for In-Vitro Retinal Studies Debbie Gunning K. Mathieson 1, C. Adams 1, W. Cunningham.
Selected Biosensors Yu Cao Oct 28, Yu Cao Outline Two categories of biosensors –I: Electrical sensors –II: Optical sensors.
Single Molecule Electronics And Nano-Fabrication of Molecular Electronic Systems S.Rajagopal, J.M.Yarrison-Rice Physics Department, Miami University Center.
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
M S El Bana 1, 2* and S J Bending 1 1 Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK 2 Department of Physics, Ain Shams University,
Nanotechnology Understanding and control of matter at dimensions of 1 to 100 nanometers Ultimate aim: design and assemble any structure atom by atom -
Development of Scanning Probe Lithography (SPL)
Co-sensitized quantum dot solar cell based on ZnO nanowire a. J. Chena, J. Wua, W. Leia, b. J.L. Songb, W.Q. Dengb, c. X.W. Sunc a School of Electronic.
Development of an Electrochemical Micro Flow Reactor (EMFR) for electrocatalytic studies of methanol oxidation and fuel cell applications. Nallakkan Arvindan*,
Carbon Nanotube Sites for Neural-Network Patterning and Recording Tamir Gabay 1, Itshak Kalifa 1, Lisa Ezra 1, Eshel Ben-Jacob 2, Yael Hanein 1 1 School.
Gated Hybrid Hall Effect (HHE) devices on silicon
1 Carnegie Mellon Microcantilever Gas Chemical Sensors with Multi-modal Capability Sarah S. Bedair 1 Advisor:
Interconnect Focus Center e¯e¯ e¯e¯ e¯e¯ e¯e¯ SEMICONDUCTOR SUPPLIERS Goal: Fabricate and perform electrical tests on various interconnected networks of.
ELECTRICAL POROUS SILICON MICROARRAY FOR DNA HYBRIDIZATION DETECTION M. Archer*, D. Persaud**, K. D Hirschman**, M. Christophersen* and P. M Fauchet* *Center.
System Design of a Molecular Communication Network Christina Wong 1,Tatsuya Suda 2 (Faculty Mentor) 1 Department of Biomedical Engineering, 2 School of.
A DNA-Templated Carbon Nanotube Field Effect Transistor Erez BraunUri Sivan Rotem BermanEvgeny Buchstab Gidi Ben-Yoseph Kinneret Keren Physics Department.
BIO-MEMS DEVICES TO MONITOR NEURAL ELECTRICAL CIRCUITRY Andres Huertas, Michele Panico, Shuming Zhang ME 381 Final Project, Dec 4th, 2003.
ELE 523E COMPUTATIONAL NANOELECTRONICS W1: Introduction, 8/9/2014 FALL 2014 Mustafa Altun Electronics & Communication Engineering Istanbul Technical University.
IR (Infrared) Night Vision Weapon Detection Security Monitoring Firefighting.
Nitride Materials and Devices Project
NER: Nanoscale Sensing and Control of Biological Processes Objective: To provide a microelectronic and microfluidic environment as a test bed for nanoelectronic.
Powerpoint Templates Page 1 Powerpoint Templates Optically induced flow cytometry for continuous microparticle counting and sorting Student: Chin – wei.
Ceramics and Materials Engineering Nanomaterials.
Os, 9/16/99 MICROMACHINING AND MICROFABRICATION TECHNOLOGY FOR ADAPTIVE OPTICS Olav Solgaard Acknowledgements: P.M. Hagelin, K. Cornett, K. Li, U. Krishnamoorthy,
Development of a new microfluidic analysis system on silicon with different nanostructures as sensitive elements Mihaela Miu, Irina Kleps, Florea Craciunoiu,
Education, Outreach, and Broader Impact Through the EAGLE school science mentor program, 8 th grade student Adam Schneider worked with students Sarah Baker.
IC Process Integration
Fabrication and characterization of Au-Ag alloy thin films resistance random access memory C. C. Kuo 1 and J. C. Huang 1,* 1 Department of Materials and.
Scanned Probe Imaging of Switching Centers in Molecular Devices HP Labs Quantum Science Research Chun Ning (Jeanie) Lau Dr. Duncan Stewart Dr. R. Stanley.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Electrical characterization of a superconducting hot spot microbolometer S.Cibella, R. Leoni, G. Torrioli, M. G. Castellano, A. Coppa, F. Mattioli IFN-CNR,
PTC Proposal Seongjin Jang September 09, Submit Application To PTC All the users should submit their process-related information to Process Technology.
Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits Student: Xu Zhang Chad A. Mirkin et al. Small.
Fabrication of Suspended Nanowire Structures Jason Mast & Xuan Gao
LbL MEMS and Protein Structures Annie Cheng Rajesh Kumar Group: Sections: 3.10 and 3.11.
IC Fabrication/Process
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
VLSI INTERCONNECTS IN VLSI DESIGN - PROF. RAKESH K. JHA
Department of Chemistry , SungKyunKwan University
2. Design Determine grating coupler period from theory: Determine grating coupler period from theory: Determine photonic crystal lattice type and dimensions.
Transport Results S51 3nm Ti / 60nm Au / C10-dithiol / 20nm Au Nanotransfer printed (50 micron pads)
National Science Foundation Outcome: Researchers at University of Maryland have created a 3D biological templated current collector with improved solar.
Advanced Computing and Information Systems laboratory Nanocomputing technologies José A. B. Fortes Dpt. of Electrical and Computer Eng. and Dpt. of Computer.
March 3rd, 2008 EE235 Nanofabrication, University of California Berkeley Hybrid Approach of Top Down and Bottom Up to Achieve Nanofabrication of Carbon.
Chieh Chang EE 235 – Presentation IMarch 20, 2007 Nanoimprint Lithography for Hybrid Plastic Electronics Michael C. McAlpine, Robin S. Friedman, and Charles.
Date of download: 11/12/2016 Copyright © 2016 SPIE. All rights reserved. A sketch of a micro four-point probe with integrated CNTs in situ grown from nickel.
Manufacturing Process I
UV-Curved Nano Imprint Lithography
Temperature Sensors on Flexible Substrates
Characterisation of the back-etched stack
Materials and Devices for Neural Systems and Interfaces
Top-down and Bottom-up Processes
INTRO TO TDM AND BUM TDM – Top Down Manufacturing
Gisselle Gonzalez1, Adam Hinckley2, Anthony Muscat2
Manufacturing Process I
INTRO TO TDM AND BUM TDM – Top Down Manufacturing
Deposit latex particles onto silicon substrate
Yingjie Ma, Jian Cui*, Yongliang Fan, Zhenyang Zhong, Zuimin Jiang
Electron Spin Resonance Spectroscopy of a Single Carbon Nanotube
Manufacturing Process I
Multiscale Modeling and Simulation of Nanoengineering:
N.Yavarishad1, T.Hosseini1, E.Kheirandish1,C.P.Weber2 and N.Kouklin1
2. SEM images of different SiNW structures 3.Results and discussion
Fig. 2 Materials and designs for bioresorbable PC microcavity-based pressure and temperature sensors. Materials and designs for bioresorbable PC microcavity-based.
Illustration of MIS-C and the characterization of the device structure
Presentation transcript:

טרנזיסטורים מולקולאריים וגלאים (sensors) - מחקר טכנולוגי S. Moshe, S. Toledano, K. Finkelstein, R. Sarfaty, S. Richter, S. Stolyarova, and Y. Nemirovsky  מוטיבציה  מבנה  תהליכי עבוד  מדידות  מסקנות

תשתיות יקרות!

לגעת בגבולות הטכנולוגיות בנקודת המפגש עם הכימיה והביולוגיה.

Development of nano-transistor based on Self Assembly deposition of Biological Molecules Department of Electronics and Electrical engineering, Ort Braude College, Karmiel & Nano-science and nano-technology institute, Tel Aviv University by Shai-li Mosheadvisors: Dr. Shachar Richter Dr. Rona Sarfaty

האתגר – שילוב טכנולוגי, כימי וביולוגי. אלקטרוניקה מולקולרית טרנזיסטור ייחודי (אקלקטי) : 1.שפך ומקור טכנולוגית Si 2.תעלה ביו-מולקולרית 3.החלפת הליטוגרפיה הטכנולוגית בתהליך כימי של Self Assembly 4.שער פוטוני. Why Molecules ?

The device Si SiO 2 Si 3 N 4 Ti Au Indium-Tin-Oxide (ITO) Photo-System-I 1. Si/SiO2 (575um/200nm) substrate 2. Photo lithography 3. Ti/Au (10nm/140nm) 4. Lift off 5.50nm Silicon Nitride PECVD 6.7. Photo lithography to define: I. cavities for SAM II. vias to bottom electrodes 8. Nitride RIE AFM – 3D of a cavity Optical Microscope 1um

PS-I molecule קומפלקס חלבוני המעורב בתהליך פוטוסינתזה חמצנית

ITO Au SAM (PS-I) inside a cavity Si 3 N 4 SiO 2 Si 3D illustration light Bottom electrode Top electrode SAM Top View

Electrical measurements 2. Photo-current effect A KEITHLEY236 Olympus lamp Hal-L12V 100W

conclusions Conductance is through the molecules Gating by light – 8nm channel Full encapsulation - no performance reduction Total VLSI compatibility

Image of the 100 nL volume electrochemical chip. (a) Silicon chip contains an array of eight miniaturized electrochemical cells with external pads. Novel Integrated Electrochemical Nano-Biochip for Toxicity Detection in Water Prof. Yosi Shacham

Uncooled IR sensors: the Honeywell VOx bolometer Array: 320 * 240 Pixel: (30-50 )* 50 micron NETD ~ 30 mK (Optics) Cost < $ 2 K 2%