Synchronize when the speaker finishes saying, “…despite Earnshaw...” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125:

Slides:



Advertisements
Similar presentations
Final Chemistry 125: Lecture 5 Sept. 11, 2009 X-Ray Diffraction SPM techniques are not quite good enough yet to study how electrons are distributed in.
Advertisements

Chemistry 125: Lecture 5 Sept. 10, 2010 X-Ray Diffraction In the last 25 years various manifestations of Scanning Probe Microscopy, such as AFM, STM, and.
1 SpectroscopIC aNALYSIS Part 7 – X-ray Analysis Methods Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water Studies Centre &
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry This For copyright notice see final page of this.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chemistry 125: Lecture 60 March 23, 2011 NMR Spectroscopy Chemical Shift and Diamagnetic Anisotropy, Spin-Spin Coupling This For copyright notice see final.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to more complex molecules, this lecture introduces.
Chemistry 125: Lecture 68 April 14, 2010 Mitsunobu Reaction Acids and Acid Derivatives This For copyright notice see final page of this file.
Chemistry 125: Lecture 48 February 8, 2010 Addition to Alkenes a Physical-Organic MO Perspective This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 October 5, 2009 Checking Hybridization Theory with XH 3 Infrafred and electron spin resonance experiments with three XH 3 molecules.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chemistry 125: Lecture 16 October 9, 2009 Reaction Analogies and Carbonyl Reactivity Comparing the low LUMOs that make both HF and CH 3 F acidic underlines.
Chem 125 Lecture 5 9/12/08 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 64 April 7, 2010 Carbonyl Compounds Preliminary This For copyright notice see final page of this file.
Chemistry 125: Lecture 55 February 24, 2010 (4n+2) Aromaticity Cycloaddition Electrocyclic Reactions This For copyright notice see final page of this file.
Chemistry 125: Lecture 34 Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes Professor Barry Sharpless of Scripps Research Institute describes.
Chemistry 125: Lecture 43 January 25, 2010 Solvation, Ionophores and Brønsted Acidity This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 9, 2010 Oxidizing/Reducing Reagents Bookeeping & Mechanism This For copyright notice see final page of this file.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to a more complex molecule, this lecture.
Chem 125 Lecture 6 9/18/06 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
The magnitude of the curvature of a wave function relates to the kinetic energy of the system, and the square of the wave function relates to probability.
Chemistry 125: Lecture 66 April 6, 2011 Carbonyl Chemistry: Imines & Enamines Oxidation/Reduction & Electron Transfer This For copyright notice see final.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 47 February 5, 2010 Addition to Alkenes a Synthetic Perspective guest lecture by Prof. Jay S. Siegel Universit ä t Zurich This For.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 40 January 15, 2010 Predicting Rate Constants, and Reactivity - Selectivity Relation. Rates of Chain Reactions. This For copyright.
Chemistry 125: Lecture 64 April 2, 2010 Carbonyl Compounds Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 7, 2010 Addition to C=O Mechanism & Equilibrium Protecting Groups Oxidation/Reduction & Electron Transfer This For copyright.
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry Preliminary more coming This For copyright notice.
Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic.
Chem 125 Lecture 7 9/20/06 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 57 March 3, 2010 Normal Modes: Mixing and Independence in Infrared Spectroscopy This For copyright notice see final page of this.
Chemistry 125: Lecture 69 April 16, 2010 Decarboxylation (Ch. 17) and Acyl Compounds (Ch. 18) This For copyright notice see final page of this file.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chemistry 125: Lecture 67 April 11, 2011 Triphenylmethyl Spectra Friedel-Crafts Revisited Oxidizing/Reducing Scheme Alcohol Oxidation Mechanism This For.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Several tricks (“Z-effective” and “Self Consistent Field”) allow one to correct approximately for the error in using orbitals when there is electron-electron.
Chemistry 125: Lecture 62 March 29, 2010 Electrophilic Aromatic Substitution This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 Checking Hybridization Theory with XH 3 Synchronize when the speaker finishes saying “…whether what we have done is realistic.
Chemistry 125: Lecture 60 March 24, 2010 NMR Spectroscopy Isotropic J and Dynamics This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 4, 2011 Addition to C=O Mechanism & Equilibrium Protecting Groups Imines This For copyright notice see final page of this.
Analysis of crystal structure x-rays, neutrons and electrons
Properties of ElectroMagnetic Radiation (Light)
Chemistry 125: Lecture 59 March 22, 2010 NMR Spectroscopy Chemical Shift and Spin-Spin Coupling This For copyright notice see final page of this file.
X-RAY DIFFRACTION BY Fatma Defne Kocaayan Buket Sinem Gökhan Cesur.
X-Ray Diffraction Dr. T. Ramlochan March 2010.
X RAY CRYSTALLOGRAPHY. WHY X-RAY? IN ORDER TO BE OBSERVED THE DIMENTIONS OF AN OBJECT MUST BE HALF OF THE LIGHT WAVELENGHT USED TO OBSERVE IT.
Molecular Crystals. Molecular Crystals: Consist of repeating arrays of molecules and/or ions.
Page 1 X-ray crystallography: "molecular photography" Object Irradiate Scattering lens Combination Image Need wavelengths smaller than or on the order.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
X-ray diffraction X-rays discovered in 1895 – 1 week later first image of hand. X-rays have ~ 0.1 – few A No lenses yet developed for x-rays – so no possibility.
X-Ray Diffraction By Cade Grigsby.
The Braggs and X ray Crystallography By sending radiation through crystal structures you should be able to produce diffraction around the atoms.
Properties of ElectroMagnetic Radiation (Light)
Chemistry 125: Lecture 17 October 8, 2010 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four functional.
Chemistry 125: Lecture 48 February 7, 2011 Alkenes: Stability and Addition Mechanisms Electrophilic Addition This For copyright notice see final page of.
Condensations (J&F Ch. 19) Fischer’s Glucose Proof - Introduction
Today’s Lecture Interference Diffraction Gratings Electron Diffraction
Ø. Prytz Introduction to diffraction Øystein Prytz January
Lecture_08: Outline Matter Waves  de Broglie hypothesis  Experimental verifications  Wave functions.
Crystallography : How do you do? From Diffraction to structure…. Normally one would use a microscope to view very small objects. If we use a light microscope.
Thin-Film Interference Summary
Cont. Proteomics Structural Genomics Describes the experimental and analytical techniques that are used to determine the structure of proteins and RNA.
Chemistry 125: Lecture 5 X-Ray Diffraction
Trends in the periodic table and bonding
Diffraction Interference of waves creates a diffraction pattern.
Diamagnetic Anisotropy, Spin-Spin Coupling
A. The Solid State Classification of Solid Structures
Presentation transcript:

Synchronize when the speaker finishes saying, “…despite Earnshaw...” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125: Lecture 5 X-Ray Diffraction Because light is scattered by charged particles of small mass, the electron distribution in molecules can be determined by x-ray diffraction. The roles of molecular pattern and crystal lattice repetition can be illustrated by shining a visible laser through diffraction masks to generate scattering patterns reminiscent of those encountered in X-ray studies of ordered solids. For copyright notice see final page of this file

Despite Earnshaw, might there still be shared-pair bonds and lone pairs?

Scanning Probe Microscopies (AFM, STM, SNOM) are really powerful. Sharp points can resolve individual molecules and even atoms but not bonds

Lux

A lonely architectural curiosity on Sterling Chemistry Laboratory at Yale University (1923)

Micrographia Robert Hooke (1665) “But Nature is not to be limited by our narrow comprehension; future improvements of glasses may yet further enlighten our understanding, and ocular inspection may demonstrate that which as yet we may think too extravagant either to feign or suppose.”

Water Oil “Thickness” ~ 200 nm Path Difference = 400 nm = 0.5 Strong 400 nm Scattering No 800 nm Scattering = 1 Interference upon Scattering

Chris Incarvito’s New Toys

User Operated - CCD Detector X-Ray Tube ~$200K

Image Plate ~$350K

"Seeing" Individual Molecules, Atoms, and Bonds? Problem:

What IS light?

In What Way is Light a Wave? Force on Charge at One Position Up Down 0 Time Charged Particle

Charged Particle In What Way is Light a Wave? Force at Different Positions - OneTime Up Down 0 Position

Accelerated Electrons “Scatter” Light Why don’t protons or other nuclei scatter light? Too heavy! direct beam

Interference of Ripples Angular Intensity Distribution at great distance depends on Scatterer Distribution at the origin

By refocussing, a lens can reassemble the information from the scattered wave into an image of the scatterers. But a lens for x-rays is hard to come by. Be sure to read the webpage on x-ray diffraction.

"Seeing" Molecules, Atoms, Bonds Collectively by X-Ray Crystallography

Blurring Problem Blurring Problem from Motion and Defects Time Averaging Space Averaging in Diffraction (Cooperative Scattering) Advantage for SPM (Operates in Real Space)

In 1895 Röntgen Discovers X-Rays Shadow of Frau R ö entgen ’ s hand (1896) In 1912 Laue Invents X-Ray Diffraction CuSO 4 Diffraction (1912)

Wm. Lawrence Bragg ( ) Determined structure of ZnS from Laue's X-ray diffraction pattern (1912) Youngest Nobel Laureate (1915) Courtesy Dr. Stephen Bragg

B-DNA R. Franklin (1952)

Science, 11 August 2000

25 nm (250 Å) >100,000 atoms + hydrogens!

What can X-ray diffraction show? How does diffraction work? Like all light, X-rays are waves. Atoms?Molecules?Bonds?

Wave Machines

by permission, Konstantin Lukin Bragg Machine Breaks? in & out same phase

Direct Two Scattering Directions are Always Exactly in Phase “scattering vector” Specular perpendicular to scattering vector All electrons on a plane perpendicular to the scattering vector scatter in-phase at the specular angle ! Specular

scattering vector Electrons-on-Evenly-Spaced-Planes Trick

10 scattering vector Net in-phase scattering Total Electrons Suppose & angle such that: Electrons-on-Evenly-Spaced-Planes Trick

10 scattering vector Suppose first path difference is half a wavelength, because of change in (or angle) Net in-phase scattering Total Electrons Electrons-on-Evenly-Spaced-Planes Trick

View from Ceiling 10.6 m 633 nm DIFFRACTION MASK (courtesy T. R. Welberry, Canberra) ………………….. spacing = 10.8 cm Q. What is the line spacing?

End of Lecture 5 Sept 12, 2008 Copyright © J. M. McBride Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol. Third party materials may be subject to additional intellectual property notices, information, or restrictions. The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0