CS 268: Lecture 11 (Differentiated Services) Ion Stoica March 6, 2001.

Slides:



Advertisements
Similar presentations
QoS Strategy in DiffServ aware MPLS environment Teerapat Sanguankotchakorn, D.Eng. Telecommunications Program, School of Advanced Technologies Asian Institute.
Advertisements

Quality of Service CS 457 Presentation Xue Gu Nov 15, 2001.
Spring 2003CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 – QoS.
TAs: Junda Liu, DK Moon, David Zats
QoS: IntServ and DiffServ Supplemental Slides Aditya Akella 02/26/2007.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 20 – March 25, 2010.
Real-Time Protocol (RTP) r Provides standard packet format for real-time application r Typically runs over UDP r Specifies header fields below r Payload.
CPSC Topics in Multimedia Networking A Mechanism for Equitable Bandwidth Allocation under QoS and Budget Constraints D. Sivakumar IBM Almaden Research.
Differentiated Services. Service Differentiation in the Internet Different applications have varying bandwidth, delay, and reliability requirements How.
CS 552 Computer Networks Quality Of Service
15-441: Computer Networking Lecture 18: QoS Thanks to David Anderson and Srini Seshan.
Integrated Services and Differentiated Services. Limitations of IP Architecture in Supporting Resource Management IP provides only best effort service.
ACN: IntServ and DiffServ1 Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook “ Computer.
CS Summer 2003 Lecture 8. CS Summer 2003 Populating LFIB with LDP Assigned/Learned Labels Changes in the LFIB may be triggered routing or.
CS 268: Differentiated Services Ion Stoica February 25, 2003.
CSE 401N Multimedia Networking-2 Lecture-19. Improving QOS in IP Networks Thus far: “making the best of best effort” Future: next generation Internet.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
15-744: Computer Networking
DiffServ QoS in internet
School of Information Technologies IP Quality of Service NETS3303/3603 Weeks
1 Network Architecture and Design Internet QoS Differentiated Services (DiffServ) Multiprotocol Label Switching (MPLS) Reference Zheng Wang, Internet QoS,
Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks.
CSc 461/561 CSc 461/561 Multimedia Systems Part C: 3. QoS.
CS 268: Lecture 17 (Dynamic Packet State) Ion Stoica April 15, 2002.
Spring 2002CS 4611 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services.
1 Network Architecture and Design Internet QoS Differentiated Services (DiffServ) Multiprotocol Label Switching (MPLS) Reference Zheng Wang, Internet QoS,
1 CS 194: Distributed Systems Resource Allocation Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer.
Internet Quality of Service. Quality of Service (QoS) The best-effort model, in which the network tries to deliver data from source to destination but.
24-1 Chapter 24. Congestion Control and Quality of Service part Quality of Service 23.6 Techniques to Improve QoS 23.7 Integrated Services 23.8.
Tiziana FerrariQuality of Service for Remote Control in the High Energy Physics Experiments CHEP, 07 Feb Quality of Service for Remote Control in.
{vp, sra, Security in Differentiated Services Networks Venkatesh Prabhakar Srinivas R.
Computer Networking Quality-of-Service (QoS) Dr Sandra I. Woolley.
Integrated Services (RFC 1633) r Architecture for providing QoS guarantees to individual application sessions r Call setup: a session requiring QoS guarantees.
A Two-bit Differentiated Services Architecture K. Nichols, V. Jacobson, L. Zhang presented by Wendy Edwards.
CS Spring 2011 CS 414 – Multimedia Systems Design Lecture 23 - Multimedia Network Protocols (Layer 3) Klara Nahrstedt Spring 2011.
1 Quality of Service (QoS) - DiffServ EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew.
CSE QoS in IP. CSE Improving QOS in IP Networks Thus far: “making the best of best effort”
Quality of Service (QoS)
QOS مظفر بگ محمدی دانشگاه ایلام. 2 Why a New Service Model? Best effort clearly insufficient –Some applications need more assurances from the network.
CSC 336 Data Communications and Networking Lecture 8d: Congestion Control : RSVP Dr. Cheer-Sun Yang Spring 2001.
Class-based QoS  Internet QoS model requires per session state at each router  1000s s of flows  per session RSVP is complex => reluctance.
1 Quality of Service Outline Realtime Applications Integrated Services Differentiated Services MPLS.
CIS679: DiffServ Model r Review of Last Lecture r 2-bit DiffServ architecture.
Wolfgang EffelsbergUniversity of Mannheim1 Differentiated Services for the Internet Wolfgang Effelsberg University of Mannheim September 2001.
Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms TTM8100 Slides edited by Steinar Andresen.
Differentiated Services for the Internet Selma Yilmaz.
Differentiated Services MPLS Doug Young Suh Last updated : Aug 1, 2009 diffServ/RSVP.
Providing QoS in IP Networks Future: next generation Internet with QoS guarantees m Differentiated Services: differential guarantees m Integrated Services:
© Jörg Liebeherr, Quality-of-Service Architectures for the Internet.
CS640: Introduction to Computer Networks Aditya Akella Lecture 21 – QoS.
EE 122: Lecture 15 (Quality of Service) Ion Stoica October 25, 2001.
Advance Computer Networking L-7 QoS. QoS IntServ DiffServ Assigned reading [ [She95] Fundamental Design Issues for the Future Internet [CSZ92] Supporting.
1 Multimedia Networking: Beyond Best-Effort Internet.
An End-to-End Service Architecture r Provide assured service, premium service, and best effort service (RFC 2638) Assured service: provide reliable service.
Differentiated Services IntServ is too complex –More focus on services than deployment –Functionality similar to ATM, but at the IP layer –Per flow QoS.
Differentiated Services Two Approaches for Providing QoS on the Internet u “Freeway model” -- integrated services Internet (intserv) – Build a dedicated.
EE 122: Integrated Services Ion Stoica November 13, 2002.
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
An End-to-End Service Architecture r Provide assured service, premium service, and best effort service (RFC 2638) Assured service: provide reliable service.
Mar-16 1 Cairo University Faculty of Engineering Electronics &Communication dpt. 4th year Linux-based Implementation Of a Router (B.Sc Graduation project)
Quality of Service Frameworks Hamed Khanmirza Principles of Network University of Tehran.
Chapter 30 Quality of Service Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Internet Quality of Service
Advanced Computer Networks
Klara Nahrstedt Spring 2009
EE 122: Lecture 18 (Differentiated Services)
EE 122: Lecture 7 Ion Stoica September 18, 2001.
EE 122: Differentiated Services
CIS679: Two Planes and Int-Serv Model
Presentation transcript:

CS 268: Lecture 11 (Differentiated Services) Ion Stoica March 6, 2001

Administrative Announcement  Next Monday (March 11) project presentations:  Each group has 8 minutes -5 minutes for presentations -3 minutes for questions  Time will be very strictly enforced  Don’t use more than five slides (including the title slide)

Presentation  1 st slide: Title  2 nd slide: motivations and problem formulation -Why is the problem important? -What is challenging/hard about your problem  3 rd slide: main idea of your solution  4 th slide: status  5 th slide: future plans and schedule

What is the Problem?  Goal: provide support for wide variety of applications: -Interactive TV, IP telephony, on-line gamming (distributed simulations), VPNs, etc  Problem: -Best-effort cannot do it (see previous lecture) -Intserv can support all these applications, but Too complex Not scalable

Differentiated Services (Diffserv)  Build around the concept of domain  Domain – a contiguous region of network under the same administrative ownership  Differentiate between edge and core routers  Edge routers -Perform per aggregate shaping or policing -Mark packets with a small number of bits; each bit encoding represents a class (subclass)  Core routers -Process packets based on packet marking  Far more scalable than Intserv, but provides weaker services

Diffserv Architecture  Ingress routers -Police/shape traffic -Set Differentiated Service Code Point (DSCP) in Diffserv (DS) field  Core routers -Implement Per Hop Behavior (PHB) for each DSCP -Process packets based on DSCP Ingress Egress Ingress Egress DS-1 DS-2 Edge router Core router

Differentiated Service (DS) Field VersionHLen TOSLength Identification Fragment offset Flags Source address Destination address TTLProtocolHeader checksum Data IP header  DS filed reuse the first 6 bits from the former Type of Service (TOS) byte  The other two bits are proposed to be used by ECN DS Filed

Differentiated Services  Two types of service -Assured service -Premium service  Plus, best-effort service

Assured Service [Clark & Wroclawski ‘97]  Defined in terms of user profile, how much assured traffic is a user allowed to inject into the network  Network: provides a lower loss rate than best-effort -In case of congestion best-effort packets are dropped first  User: sends no more assured traffic than its profile -If it sends more, the excess traffic is converted to best- effort

Assured Service  Large spatial granularity service  Theoretically, user profile is defined irrespective of destination -All other services we learnt are end-to-end, i.e., we know destination(s) apriori  This makes service very useful, but hard to provision (why ?) Ingress Traffic profile

Premium Service [Jacobson ’97]  Provides the abstraction of a virtual pipe between an ingress and an egress router  Network: guarantees that premium packets are not dropped and they experience low delay  User: does not send more than the size of the pipe -If it sends more, excess traffic is delayed, and dropped when buffer overflows

Edge Router Classifier Traffic conditioner Scheduler Class 1 Class 2 Best-effort Marked traffic Ingress Per aggregate Classification (e.g., user) Data traffic

Assumptions  Assume two bits -P-bit denotes premium traffic -A-bit denotes assured traffic  Traffic conditioner (TC) implement -Metering -Marking -Shaping

TC Performing Metering/Marking  Used to implement Assured Service  In-profile traffic is marked: -A-bit is set in every packet  Out-of-profile (excess) traffic is unmarked -A-bit is cleared (if it was previously set) in every packet; this traffic treated as best-effort r bps b bits Metering in-profile traffic out-of-profile traffic assured traffic User profile (token bucket) Set A-bit Clear A-bit

TC Performing Metering/Marking/Shaping  Used to implement Premium Service  In-profile traffic marked: -Set P-bit in each packet  Out-of-profile traffic is delayed, and when buffer overflows it is dropped r bps b bits Metering/ Shaper/ Set P-bit in-profile traffic out-of-profile traffic (delayed and dropped) premium traffic User profile (token bucket)

Scheduler  Employed by both edge and core routers  For premium service – use strict priority, or weighted fair queuing (WFQ)  For assured service – use RIO (RED with In and Out) -Always drop OUT packets first For OUT measure entire queue For IN measure only in-profile queue OUTIN Average queue length 1 Dropping probability

Scheduler Example  Premium traffic sent at high priority  Assured and best-effort traffic pass through RIO and then sent at low priority P-bit set? A-bit set?RIO yes no yes no high priority low priority

Control Path  Each domain is assigned a Bandwidth Broker (BB) -Usually, used to perform ingress-egress bandwidth allocation  BB is responsible to perform admission control in the entire domain  BB not easy to implement -Require complete knowledge about domain -Single point of failure, may be performance bottleneck -Designing BB still a research problem

Example  Achieve end-to-end bandwidth guarantee BB sender receiver 8 profile 6 4

Comparison to Best-Effort and Intserv Best-EffortDiffservIntserv ServiceConnectivity No isolation No guarantees Per aggregate isolation Per aggregate guarantee Per flow isolation Per flow guarantee Service scope End-to-endDomainEnd-to-end ComplexityNo setupLong term setupPer flow steup ScalabilityHighly scalable (nodes maintain only routing state) Scalable (edge routers maintains per aggregate state; core routers per class state) Not scalable (each router maintains per flow state)

Summary  Diffserv more scalable than Intserv -Edge routers maintain per aggregate state -Core routers maintain state only for a few traffic classes  But, provides weaker services than Intserv, e.g., -Per aggregate bandwidth guarantees (premium service) vs. per flow bandwidth and delay guarantees  BB is not an entirely solved problem -Single point of failure -Handle only long term reservations (hours, days)