Markus Büttiker University of Geneva Technion, Haifa, Israel, Jan. 11, 2007 Quantum shot noise: from Schottky to Bell.

Slides:



Advertisements
Similar presentations
Interferometric Measurement of Spatial Wigner Functions of Light Bryan Killett Brian J. Smith M. G. Raymer Funded by the NSF through the REU and ITR programs.
Advertisements

Quantum optical effects with pulsed lasers
Superconducting qubits
1 High order moments of shot noise in mesoscopic systems Michael Reznikov, Technion Experiment: G. Gershon, Y. Bomze, D. Shovkun Theory: E. Sukhorukov.
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Generation of short pulses
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum shot noise: from Schottky to Bell
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
Scattering theory of conductance and noise Markus Büttiker University of Geneva Multi-probe conductors.
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers V. S.-W. Chung(鐘淑維)1,2, P. Samuelsson3 ,and.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Spin Quantum Number and Spin Example: Electron, s = ½ (fermion) Implications? Spin angular momentum is INTRINSIC to a particle mass charge spin More 
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Gabriel Cwilich Yeshiva University NeMeSyS Symposium 10/26/2008 Luis S. Froufe Perez Ecole Centrale, Paris Juan Jose Saenz Univ. Autonoma, Madrid Antonio.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
Quantum Physics Study Questions PHYS 252 Dr. Varriano.
Hanbury Brown and Twiss Effect Anton Kapliy March 10, 2009.
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Quantum information: From foundations to experiments Second Lecture Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro BRAZIL.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
Particle-particle correlations produced by dynamical scatterer M. Moskalets Dpt. of Metal and Semiconductor Physics, NTU "Kharkiv Polytechnical Institute",
Quantum Dense coding and Quantum Teleportation
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Weak measurement of cotunneling time
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
“Experimental quantum computers” or, the secret life of experimental physicists 1 – Qubits in context Hideo Mabuchi, Caltech Physics and Control & Dynamical.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
By Supervisor Urbashi Satpathi Dr. Prosenjit Singha De0.
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
Quantum teleportation between light and matter
Dynamics of a BEC colliding with a time-dependent dipole barrier OSA Frontiers in Photonics 2006 starring Chris Ellenor as Mirco Siercke Aephraim Steinberg’s.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Review of lecture 5 and 6 Quantum phase space distributions: Wigner distribution and Hussimi distribution. Eigenvalue statistics: Poisson and Wigner level.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Sub-Planck Structure and Weak Measurement
Elements of Quantum Mechanics
OSU Quantum Information Seminar
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Markus Büttiker University of Geneva Technion, Haifa, Israel, Jan. 11, 2007 Quantum shot noise: from Schottky to Bell

Opening the tool box.. Making quantum mechanics visible in man made structures Webb et al. (1985) diffusive ballistic Persistent currents Aharonov-Bohm effect Universal conductance fluctuations Conductance quantization Looking at individual quantum systems 2 ….

..to extract correlations Quantum communication Quantum computation ? 3 “..a kind of correlation … quite different from previously known correlations..”

S N N Dot & superconductor entanglers Recher et al. PRB (2001) Lesovik et al. EPJB 24, 287 (2001) Taddei and Fazio, PRB 65, (2002) Oliver et al PRL (2002) Bena et al PRL (2002) Saraga and Loss, PRL (2003) Long spin coherence length - Difficult to manipulate/detect Spin entanglement 4

Orbital entanglement Pair-tunneling picture Electron-hole picture Beenakker, Emary, Kindermann, van Velsen, PRL 91, (2003) Samuelsson, Sukhorukov, Büttiker, PRL 91, (2003) Normal conductors NS-structures 5

Quantum versus classical shot noise Classical shot noise : W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918) Quantum shot noise: Khlus (1987), Lesovik (1989), Yurke and Kochanski (1989), Buttiker (1990), Beenakker and van Houten (1991) 6

Shot Noise: Two-terminal Quantum partition noise: kT = 0, V>0, If all Schottky (Poisson) Fano factor Buttiker (1990) 7 Experiments: ReznikovReznikov (Heiblum) et al. PRL 75, 3340 (1995)Heiblum KumarKumar, (Glattli) et al. PRL 76, 2778 (1996)Glattli

Shot Noise: Multi-terminal Mesoscopic conductor with N contacts At kT = 0, M=1, partition noise M > 1, At kT = 0, M contacts with N-M contacts at relative phase of scattering matrix elements becomes important Exchange interference effects: Buttiker, PRL 68, 843 (1992) 8

Partition Noise anti-bunching negative correlations bunching positive correlations 9

Oberholzer,experiment Oberholzer et al, Physica E6, 314 (2000) See also: Henny, et al., Science 284, 296 (1999); Oliver et al. Science 284, 299 (1999) 10

Reversing the sign of currrent- current correlations Theory (edge states): Texier and Buttiker, PRB 62, 7454 (2000) Theory (chaotic cavities): Rychkov and Buttiker, PRL 96, (2006) fluctuating voltageexist bunching?no 11 Macro-division of noise fluctations

Reversing the sign of current-current correlations Theory: Texier and Buttiker, PRB 62, 7454 (2000). Experiment: Oberholzer, Bieri, Schonenberger, Giovannini and Faist, PRL 96, (2006). 12

Hanbury Brown and Twiss, Nature 177, 27 (1956) Interference not of amplitudes but of intensities Optics: classical interpretation possible Quantum mechanical explanation: Purcell, Nature 178, 1449 (1956) Indistinguishable particles: Statistics, exchange amplitudes 13 HBT-Intensity Interferometer PRL 68, 843, (1992). "The Quantum Phase of Flux Correlations in Wave Gudies", Buttiker, Physica B175, 199 (1991);

Optical and Electrical Mach-Zehnder- Interferometer Ji et al (Heiblum), Nature 422, 415 (2003) One particle Aharonov-Bohm effect 16

Two-particle interferometer All elements of the conductance matrix are independent of AB-flux Samuelsson, Sukhorukov, Buttiker, PRL 92, (2004) 14

Two-particle Aharonov-Bohm Effect Samuelsson, Sukhorukov, Buttiker, PRL 92, (2004) For 15 Spin polarized [N >2 ; Sim and Sukhorukov (2006)]

Two-particle entanglement Tunnel limit: orbitally entangled e-h-state incident state tunneling limit Samuelsson, Sukhorukov, Buttiker, PRL 92, (2004) 16

Entanglement test: Bell Inequality Orbital Comparison of classical local theory with quantum mechanical prediction. Here: entanglement test Bell Inequality: Clauser et al, PRL 23, 880 (1969) Chtchelkatchev et al, PRB 66, (2002); Samuelsson et al. PRL 91, (2003) Faoro, Taddei, Fazio, PRB 69, (2004) 16 measurements violation of BI implies entanglement but not all entgangled states violate BI not invarinant under local rotations 17

Electron-electron entanglement through postselection Symmetric interferometer Incident electron state is a product state: no intrinsic entanglement Electron-hole picture not appropriate Two-particle effects nevertheless persists A Bell Inequality can be violated Explanation: Entanglement through ``postselection'' (measurement) Joint detection probability Bell parameter (Bell Inequality): Short time statistics: Pauli principle leads to injection of at most one electron in a short time interval: only two-particle transmission probability enters 18

Two-particle Intensity Interferometers Glattli et al. Schoenenberger Heiblum et al. but … 19

Dynamic electron-hole generation Samuelsson and Buttiker, Phys. Rev. B 72, (2005) 20 C. W. J. BeenakkerC. W. J. Beenakker, M. Titov, and B. Trauzettel, Phys. Rev. Lett. 94, (2005)M. TitovB. Trauzettel Rychkov, Polianski, Buttiker, Phys. Rev. B 72, (2005) Multi-particle correlations of an oscillating scatterer, M. MoskaletsM. Moskalets, M. Buttiker,M. Buttiker PRB 73, (2006).

Tomography: Medical Cormack and Hounsfield J. Radon,

Pauli’s question Pauli’s question (1933) : Can the wave function No: such data is not tomographically complete. Pauli question generalized : Can one infer the whole complex function from some series of measurements on a large collection of identically prepared particles? be determined uniquely from the distribution of position and momentum? J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1997) Yes. M. G. Raymer, Contemporary Physics, 38, 343 (1997) 22

Continuous variable tomography measure with Radon transformation obtain Wigner function from Wigner obtain via inverse Fourier transform takinggives Wigner function 23

Quantum State Tomography: Experiments Angular momentum state of an electron in hydrogene atom Quantum state of squeezed light Vibrational state o a molecule Trapped ions Atomic wave packets J.R. Ashburn et al, Phys. Rev. A 41, 2407 (1990). D.T. Smithey et al, Phys. Rev. Lett. 70, 1244 (1993). T.J. Dunn, et al, Phys. Rev. Lett. 74, 884 (1995). D. Liebfried et al, Phys. Rev. Lett. 77, 4281 (1996). Ch. Kurtsiefer, T. Pfau, and Mlynek, Nature 386, 150 (1997). Polarization entangled photons P.G. Kwiat, et al, Nature 409, 1014 (2001); T. Yamamoto et al ibid 421, 343 (2003). 24 Entanglement of two superconducting qubits Matthias Steffen et al, Science 313, 1423 (2006)

A complete reconstruction of one and two particle density matrices with current and shot-noise mesurements Matrix elements Samuelsson, Büttiker, Phys. Rev. B 73, (2006) Entanglement determined by Quantum Tomography with current and shot noise measurements 25

Quantum state tomography with quantum shot noise P. Samuelsson and M. Buttiker, Phys. Rev. B 73, (2006) Reconstruction of one-particle d.m. 26

Quantum State Tomography with shot noise reduced density matrix single particle two particle 8 current measurements 16 current correlation measurements ( same as for BI but in contrast to BI, completely determines entanglement ) P. Samuelsson and M. Buttiker, Phys. Rev. B 73, (2006) 27

Summary Shot noise measurements determine the reduced two-particle density matrix up to local rotations Orbital quantum state tomography 28 Tomography delivers not only a criteria for entanglement but allows to experimentally quantify entanglement Two-particle Aharonov-Bohm interferometer Shot noise correlations probe two-particle physics Bell test of orbital entanglement Orbital entanglement

Example: HBT geometry 24