Concurrent node joins and Stabilization Παρουσίαση: Νίκος Κρεμμυδάς Πάνος Σκυβαλίδας.

Slides:



Advertisements
Similar presentations
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Advertisements

Evaluation of a Scalable P2P Lookup Protocol for Internet Applications
CHORD – peer to peer lookup protocol Shankar Karthik Vaithianathan & Aravind Sivaraman University of Central Florida.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert MorrisDavid, Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Prepared by Ali Yildiz (with minor modifications by Dennis Shasha)
Technische Universität Yimei Liao Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei.
Technische Universität Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei Liao.
Chord: A Scalable Peer-to- Peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
The Chord P2P Network Some slides have been borowed from the original presentation by the authors.
CHORD: A Peer-to-Peer Lookup Service CHORD: A Peer-to-Peer Lookup Service Ion StoicaRobert Morris David R. Karger M. Frans Kaashoek Hari Balakrishnan Presented.
P2p CAN, CHORD, BATON (extensions). p2p Additional issues: Fault tolerance, load balancing, network awareness, concurrency Replicate & cache.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Speaker: Cathrin Weiß 11/23/2004 Proseminar Peer-to-Peer Information Systems.
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M
Chord: A scalable peer-to- peer lookup service for Internet applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashock, Hari Balakrishnan.
1 1 Chord: A scalable Peer-to-peer Lookup Service for Internet Applications Dariotaki Roula
Chord:A scalable peer-to-peer lookup service for internet applications
Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 22: Overlay Networks Xiaowei Yang
Architectures. Architectural Styles (1)  Considering the logical organization of distributed systems into software components, also referred to as software.
Somdas Bandyopadhyay Anirban Basumallik
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Presented.
1 David Liben-Nowell, Hari Balakrishnan, David Karger Analysis of the Evolution of Peer-to-Peer Systems Speaker: Jan Conrad.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up.
Description of CHORD’s Location and routing mechanisms Vincent Matossian October 12 th 2001 ECE 579.
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up protocol.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
Peer to Peer File Sharing Huseyin Ozgur TAN. What is Peer-to-Peer?  Every node is designed to(but may not by user choice) provide some service that helps.
1 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Robert Morris Ion Stoica, David Karger, M. Frans Kaashoek, Hari Balakrishnan.
Topics in Reliable Distributed Systems Lecture 2, Fall Dr. Idit Keidar.
Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications Stoica et al. Presented by Tam Chantem March 30, 2007.
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Peer-to-Peer.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari alakrishnan.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications 吳俊興 國立高雄大學 資訊工程學系 Spring 2006 EEF582 – Internet Applications and Services 網路應用與服務.
Peer To Peer Distributed Systems Pete Keleher. Why Distributed Systems? l Aggregate resources! –memory –disk –CPU cycles l Proximity to physical stuff.
Wide-area cooperative storage with CFS
EE 122: A Note On Joining Operation in Chord Ion Stoica October 20, 2002.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Lecture 3 1.
Effizientes Routing in P2P Netzwerken Chord: A Scalable Peer-to- peer Lookup Protocol for Internet Applications Dennis Schade.
Chord & CFS Presenter: Gang ZhouNov. 11th, University of Virginia.
1 Reading Report 5 Yin Chen 2 Mar 2004 Reference: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications, Ion Stoica, Robert Morris, david.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Presentation 1 By: Hitesh Chheda 2/2/2010. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT Laboratory for Computer Science.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Presented by: Tianyu Li
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Presented.
SIGCOMM 2001 Lecture slides by Dr. Yingwu Zhu Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Lecture 2 Distributed Hash Table
Chord Advanced issues. Analysis Theorem. Search takes O (log N) time (Note that in general, 2 m may be much larger than N) Proof. After log N forwarding.
Chord Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google,
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Distributed Hash.
Chord Advanced issues. Analysis Search takes O(log(N)) time –Proof 1 (intuition): At each step, distance between query and peer hosting the object reduces.
Analysis of the Evolution of Peer-to-Peer Systems Proseminar “Peer – to – Peer Information Systems” WS 04/05 Prof. Gerhard Weikum Speaker : Emil Zankov.
CS694 - DHT1 Distributed Hash Table Systems Hui Zhang University of Southern California.
The Cost of Inconsistency in Chord Shelley Zhuang, Ion Stoica, Randy Katz OASIS/i3 Retreat, January 2005.
Chapter 5 Naming (I) Speaker : Jyun-Yao Huang 1 Application and Practice of Distributed Systems.
Computer Science 425/ECE 428/CSE 424 Distributed Systems (Fall 2009) Lecture 20 Self-Stabilization Reading: Chapter from Prof. Gosh’s book Klara Nahrstedt.
CS 425 / ECE 428 Distributed Systems Fall 2015 Indranil Gupta (Indy) Peer-to-peer Systems All slides © IG.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications * CS587x Lecture Department of Computer Science Iowa State University *I. Stoica,
Chapter 29 Peer-to-Peer Paradigm Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Distributed Hash tables. 2 Overview r Objective  A distributed lookup service  Data items are distributed among n parties  Anyone in the network.
Vehicular Communications Paradigms ORT Braude College of Engineering Software Engineering Department April 2012 Students: Evgeny Yudashkin & Tal Bahalool.
The Chord P2P Network Some slides taken from the original presentation by the authors.
The Chord P2P Network Some slides have been borrowed from the original presentation by the authors.
A Scalable Peer-to-peer Lookup Service for Internet Applications
(slides by Nick Feamster)
DHT Routing Geometries and Chord
Chord Advanced issues.
Chord Advanced issues.
Chord Advanced issues.
A Scalable Peer-to-peer Lookup Service for Internet Applications
Presentation transcript:

Concurrent node joins and Stabilization Παρουσίαση: Νίκος Κρεμμυδάς Πάνος Σκυβαλίδας

Stabilization Correctness of lookups guaranteed by “stabilization” protocol used to keep successor pointers up to date. Finger tables can always be verified. Each node runs “stabilization” protocol, periodically, to update successors and finger tables.

Lookup issue Lookup before stabilization has finished  Finger table entries reasonably current: Lookup finds correct successor in O(logN) steps.  Successor pointers correct but fingers inaccurate: Correct lookups but slower.  Incorrect successor pointers or incorrect mapping (keys to nodes): Lookup may fail, higher layer software retries lookup optionally.

Stabilization algorithm (1/2) “Stabilization” protocol:  join()  stabilize()  notify()  fix_fingers()

Stabilization algorithm (2/2) When n joins, it calls join(n’) where n’ any node. join asks n’ to find immediate successor of n. Every node runs stabilize() periodically When n runs stabilize(), it asks n’s successor for successor’s predecessor p and decides whether p should be n’s successor. notify(n) notifies n’s successor k of n’s existence, so that n becomes k’s predecessor (only if k knows not of a closer predecessor). fix_fingers() adjusts old nodes’ finger table entries and initializes new nodes’ finger tables.

Stabilization example

Stabilization theorems THEOREM 4. Once a node can successfully resolve a given query, it will always be able to do so in the future. THEOREM 5. At some time after the last join all successor pointers will be correct. THEOREM 6. If we take a stable network with n nodes, and another set of up to n nodes joins the network with no finger pointers (but with correct successor pointers), then lookups will still take O(logN) time with high probability.

That’s all Thank You!