Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.

Slides:



Advertisements
Similar presentations
Communication Networks Recitation 3 Bridges & Spanning trees.
Advertisements

University of Calgary – CPSC 441.  We need to break down big networks to sub-LANs  Limited amount of supportable traffic: on single LAN, all stations.
Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
CPSC 441 TUTORIAL TA: FANG WANG HUBS, SWITCHES AND BRIDGES Parts of the slides contents are courtesy of the following people: Jim Kurose, Keith Ross:
5: Link Layer and Local Area Networks5c-1 Hubs, Bridges, and Switches r Used for extending LANs in terms of geographical coverage, number of nodes, administration.
5/31/05CS118/Spring051 twisted pair hub 10BaseT, 100BaseT, hub r T= Twisted pair (copper wire) r Nodes connected to a hub, 100m max distance r Hub: physical.
1 Computer Networks Internetworking Devices. 2 Repeaters Hubs Bridges –Learning algorithms –Problem of closed loops Switches Routers.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
Local Area Network Lesson 7 NETS2150/2850.
5: DataLink Layer5-1 Link Layer r Link layer services r Error detection and correction r Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet.
1 Last class r Random Access Protocols m Slotted Aloha m Aloha m CSMA/CD m “Taking Turns” Protocols r Link-Layer Addressing Today r Ethernet, Hubs and.
5: DataLink Layer – Ethernet, Hubs and Switches.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1 Interconnecting LAN segments Repeaters Hubs Bridges Switches.
11/18/ /20/2003 Ethernet, Hubs/Bridges/Switches, Wireless November 19-20, 2003.
LAN Technologies. LAN technologies Data link layer so far: –services, error detection/correction, multiple access Next: LAN technologies –addressing –Ethernet.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
LANs to WANs Management guide w.lilakiatsakun Text book LANs to WANs The complete management guide.
1 ECE453 – Introduction to Computer Networks Lecture 8 – Multiple Access Control (II)
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
Chapter 5 outline 5.1 Introduction and services
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
Lecture 17 Ethernet r Widely deployed because: m First LAN technology m Simpler and less expensive than token LANs and ATM m Kept up with the speed race:
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Computer Communication & Networks Lecture 13 Datalink Layer: Local Area Network Waleed Ejaz
Computer Networking Bridges/Switches, , PPP.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer.
Link Layer: MAC Ilam University Dr. Mozafar Bag-Mohammadi.
Review: –Ethernet What is the MAC protocol in Ethernet? –CSMA/CD –Binary exponential backoff Is there any relationship between the minimum frame size and.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
5: DataLink Layer5c-1 Today r Assign Homework m Ch5 #1,4,5,7,11,12 Due Wednesday October 22 m Ch5 #13-16,18,20 Due Monday, October 27 r Project #2 due.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Link Layer MAC Dr. Mozafar Bag-Mohammadi University of Ilam.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides.
5: DataLink Layer 5a-1 Bridges and spanning tree protocol Reference: Mainly Peterson-Davie.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
4: DataLink Layer1 Hubs r Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
LAN Technologies.
Chapter 3 Part 1 Switching and Bridging
Link Layer 5.1 Introduction and services
Link Layer 5.1 Introduction and services
Chapter 4 Data Link Layer Switching
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
Chapter 3 Part 1 Switching and Bridging
CS 5565 Network Architecture and Protocols
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
EEC-484/584 Computer Networks
Dr. Mozafar Bag-Mohammadi University of Ilam
EEC-484/584 Computer Networks
18: Ethernet, Hubs, Bridges, Switches
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Chapter 5 Data Link Layer – Hub, Switch
Link Layer 5.1 Introduction and services
Presentation transcript:

Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J. Kurose and K. Ross

Overview r Ethernet r Hubs, bridges, and switches r Wireless links and LANs r Last lecture on data link layer!

Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern followed by one byte with pattern r used to synchronize receiver, sender clock rates

Ethernet Frame Structure (more) r Addresses: 6 bytes m if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol m otherwise, adapter discards frame r Type: indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk) r CRC: checked at receiver, if error is detected, the frame is simply dropped

Unreliable, connectionless service r Connectionless: No handshaking between sending and receiving adapter. r Unreliable: receiving adapter doesn’t send acks or nacks to sending adapter m stream of datagrams passed to network layer can have gaps m gaps will be filled if app is using TCP m otherwise, app will see the gaps

Ethernet uses CSMA/CD r No slots r adapter doesn’t transmit if it senses that some other adapter is transmitting, that is, carrier sense r transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection r Before attempting a retransmission, adapter waits a random time, that is, random access

Ethernet CSMA/CD algorithm 1. Adaptor gets datagram from and creates frame 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame ! 4. If adapter detects another transmission while transmitting, aborts and sends jam signal 5. After aborting, adapter enters exponential backoff: after the mth collision, adapter chooses a K at random from {0,1,2,…,2 m -1}. Adapter waits K*512 bit times and returns to Step 2

Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits; Bit time: 0.1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K x 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten collisions, choose K from {0,1,2,3,4,…,1023}

CSMA/CD efficiency r T prop = max prop between 2 nodes in LAN r t trans = time to transmit max-size frame r Efficiency goes to 1 as t prop goes to 0 r Goes to 1 as t trans goes to infinity r Much better than ALOHA, but still decentralized, simple, and cheap

Overview r Ethernet r Hubs, bridges, and switches r Wireless links and LANs

Interconnecting LAN segments r Hubs r Bridges r Switches m Remark: switches are essentially multi-port bridges. m What we say about bridges also holds for switches!

Interconnecting with hubs r Backbone hub interconnects LAN segments r Physical layer devices r Extends max distance between nodes r But individual segment collision domains become one large collision domian m if a node in CS and a node EE transmit at same time: collision r Can’t interconnect 10BaseT & 100BaseT

Bridges r Link layer device m stores and forwards Ethernet frames m examines frame header and selectively forwards frame based on MAC dest address m when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of bridges r plug-and-play, self-learning m bridges do not need to be configured

Bridges: traffic isolation r Bridge installation breaks LAN into LAN segments r bridges filter packets: m same-LAN-segment frames not usually forwarded onto other LAN segments m segments become separate collision domains bridge collision domain collision domain = hub = host LAN (IP network) LAN segment

Forwarding How do determine to which LAN segment to forward frame? Looks like a routing problem...

Self learning r A bridge has a bridge table r entry in bridge table: m (Node LAN Address, Bridge Interface, Time Stamp) m stale entries in table dropped (TTL can be 60 min) r bridges learn which hosts can be reached through which interfaces m when frame received, bridge “learns” location of sender: incoming LAN segment m records sender/location pair in bridge table

Filtering/Forwarding When bridge receives a frame: index bridge table using MAC dest address if entry found for destination then{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived

Bridge example Suppose C sends frame to D and D replies back with frame to C. r Bridge receives frame from from C m notes in bridge table that C is on interface 1 m because D is not in table, bridge sends frame into interfaces 2 and 3 r frame received by D

Bridge Learning: example r D generates frame for C, sends r bridge receives frame m notes in bridge table that D is on interface 2 m bridge knows C is on interface 1, so selectively forwards frame to interface 1

Interconnection without backbone r Not recommended for two reasons: - single point of failure at Computer Science hub - all traffic between EE and SE must path over CS segment

Backbone configuration Recommended !

Some bridge features r Isolates collision domains resulting in higher total max throughput r limitless number of nodes and geographical coverage r Can connect different Ethernet types r Transparent (“plug-and-play”): no configuration necessary

Bridges vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m bridges are link layer devices r routers maintain routing tables, implement routing algorithms r bridges maintain bridge tables, implement filtering, learning and spanning tree algorithms

Routers vs. Bridges Bridges + and - + Bridge operation is simpler requiring less packet processing + Bridge tables are self learning - All traffic confined to spanning tree, even when alternative bandwidth is available - Bridges do not offer protection from broadcast storms

Routers vs. Bridges Routers + and - + arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols) + provide protection against broadcast storms - require IP address configuration (not plug and play) - require higher packet processing r bridges do well in small (few hundred hosts) while routers used in large networks (thousands of hosts)

Not an atypical LAN (IP network) Dedicated Shared

Summary comparison

Overview r Ethernet r Hubs, bridges, and switches r Wireless links and LANs

IEEE Wireless LAN r b m GHz unlicensed radio spectrum m up to 11 Mbps m widely deployed, using base stations r a m 5-6 GHz range m up to 54 Mbps r g m GHz range m up to 54 Mbps r All use CSMA/CA for multiple access r All have base-station and ad-hoc network versions

Base station approch r Wireless host communicates with a base station m base station = access point (AP) r Basic Service Set (BSS) (a.k.a. “cell”) contains: m wireless hosts m access point (AP): base station r BSS’s combined to form distribution system (DS)

Ad Hoc Network approach r No AP (i.e., base station) r wireless hosts communicate with each other m to get packet from wireless host A to B may need to route through wireless hosts X,Y,Z r Applications: m “laptop” meeting in conference room, car m interconnection of “personal” devices m battlefield r IETF MANET (Mobile Ad hoc Networks) working group

IEEE : multiple access r Collision if 2 or more nodes transmit at same time r CSMA makes sense: m get all the bandwidth if you’re the only one transmitting m shouldn’t cause a collision if you sense another transmission r Collision detection doesn’t work: hidden terminal problem