Update on SPS BPM impedance B. Salvant for the 2008 impedance team.

Slides:



Advertisements
Similar presentations
M.Gasior, CERN-AB-BIBase-Band Tune (BBQ) Measurement System 1 Base-Band Tune (BBQ) Measurement System Marek Gasior Beam Instrumentation Group, CERN.
Advertisements

SPS impedance work in progress SPSU meeting August 11 th 2011.
Impedance of SPS travelling wave cavities (200 MHz) A. Grudiev, E. Métral, B. Salvant, E. Shaposhnikova, B. Spataro Acknowledgments: Erk Jensen, Eric Montesinos,
Eirini Koukovini-Platia EPFL, CERN Impedance budget and effect of chamber coating on CLIC DR beam stability LCWS2012, E. Koukovini-Platia, 25/10/12 1 C.
Calculations of wakefields for the LHCb VeLo. Olga Zagorodnova Desy Hamburg April 29,
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
TDI longitudinal impedance simulation with CST PS A.Grudiev 20/03/2012.
STRIPLINE KICKER STATUS. PRESENTATION OUTLINE 1.Design of a stripline kicker for beam injection in DAFNE storage rings. 2.HV tests and RF measurements.
Transverse Impedance Localization in SPS Ring using HEADTAIL macroparticle simulations Candidato: Nicolò Biancacci Relatore: Prof. L.Palumbo Correlatore.
Impedance aspects of Crab cavities R. Calaga, N. Mounet, B. Salvant, E. Shaposhnikova Many thanks to F. Galleazzi, E. Metral, A. Mc Pherson, C. Zannini.
Elias Métral, APC meeting, 02/02/2006 1/35 E. Métral, G. Arduini and G. Rumolo u Observations of fast instabilities in the SPS (1988 and 2002/3) and PS.
Agenda: General kickers analysis Wang-Tsutsui method for computing impedances Benchmarks Conclusions Bibliography Acknowledgments: E.Métral, M.Migliorati,
Status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, N. Mounet, T. Rijoff, B. Salvant.
Status of the SPS impedance model C. Zannini, G. Rumolo, B. Salvant Acknowledgments: H. Bartosik, O.Berrig, G. Iadarola, E. Métral, N. Mounet, V.G. Vaccaro,
Update of the SPS transverse impedance model Benoit for the impedance team.
IMPEDANCE OF Y-CHAMBER FOR SPS CRAB CAVITY By Phoevos Kardasopoulos Thanks to Benoit Salvant, Pei Zhang, Fred Galleazzi, Roberto Torres-Sanchez and Alick.
Updated status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, B. Mikulec, N. Mounet, T. Rijoff,
Status of PSB Impedance calculations: Inconel undulated chambers C. Zannini, G. Rumolo, B. Salvant Thanks to: E. Benedetto, J. Borburgh.
Update of the SPS transverse impedance model C. Zannini, G. Rumolo, B. Salvant Acknowledgments: H. Bartosik, O.Berrig, F. Caspers, E. Chapochnikova, G.
Elias Métral, LHC Beam Commissioning Working Group meeting, 08/06/2010 /191 SINGLE-BUNCH INSTABILITY STUDIES IN THE LHC AT 3.5 TeV/c Elias Métral, N. Mounet.
Update on BGV impedance studies Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano Ferro-Luzzi,
Update on BGV impedance August 1 st 2013 Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano.
Calculations of wakefields for the LHCb VeLo. Olga Zagorodnova Desy Hamburg April 8,
Update on wire scanner impedance studies
The Quadrupole Pick-up in the CPS -intro and progress report PPC 3 Dec 1999 A. Jansson.
11 Update of the SPS impedance model G. Arduini, O. Berrig, F. Caspers, A. Grudiev, E. Métral, G. Rumolo, B. Salvant, E. Shaposhnikova, B. Spataro (INFN),
Impedance of the CLIC-DRs: What we know so far and what else we need to study…. E. Koukovini-Platia M. Barnes, A. Grudiev, N. Mounet, Y. Papaphilippou,
Outline: Motivation Comparisons with: > Thick wall formula > CST Thin inserts models Tests on the Mode Matching Method Webmeeting N.Biancacci,
First results of calculation of wakefields for the LHCb experimental chamber. Rainer Wanzenberg, Olga Zagorodnova Desy Hamburg February 2, 2015.
INTENSITY LIMITATIONS (Space Charge and Impedance) M. Zobov.
Elias Métral, SPSU Study Group and Task Force on SPS Upgrade meeting, 25/03/2010 /311 TMCI Intensity Threshold for LHC Bunch(es) in the SPS u Executive.
Update on TCTP heating H. Day, B. Salvant Acknowledgments: L. Gentini and the EN-MME team.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
Main activities and news from the Impedance working group.
1 Update on the impedance of the SPS kickers E. Métral, G. Rumolo, B. Salvant, C. Zannini SPS impedance meeting - Oct. 16 th 2009 Acknowledgments: F. Caspers,
Update on new triplet beam screen impedance B. Salvant, N. Wang, C. Zannini 7 th December 2015 Acknowledgments: N. Biancacci, R. de Maria, E. Métral, N.
Update on TMCI measurements March 5, 2008 G. Arduini, R. Jones, E. Métral, G. Papotti, G. Rumolo, B. Salvant, R Tomas, R. Steinhagen Many thanks to the.
August 21st 2013 BE-ABP Bérengère Lüthi – Summer Student 2013
Longitudinal impedance of new RF fingers O. Berrig, C. Garion, B. Salvant.
2 February 8th - 10th, 2016 TWIICE 2 Workshop Instability studies in the CLIC Damping Rings including radiation damping A.Passarelli, H.Bartosik, O.Boine-Fankenheim,
Reminder on longitudinal modes of the SPS BPMs and ZS pumping ports Benoit Salvant for the impedance team.
Three examples of application of Sussix 1)Data from simulations  sensitivity 2)Data from measurements  frequency resolution.
Update on the TDI impedance simulations and RF heating for HL- LHC beams Alexej Grudiev on behalf of the impedance team TDI re-design meeting 30/10/2012.
1CEA/ Saclay/ SACM CARE/SRF/WP11 Development of a new Beam Position Monitor for FLASH, XFEL and ILC Cryomodules Claire Simon, Michel Luong, Stéphane Chel,
XXIII European Synchrotron Light Source Workshop, November 2015 Eirini Koukovini-Platia Diamond Light Source Collective effects at Diamond Experimental.
F. Caspers, A. Grudiev, E. Métral, B. Salvant
Finemet cavity impedance studies
CLIC Main Linac Cavity BPM Snapshot of the work in progress
Follow up on SPS transverse impedance
Proposals for 2015 impedance-related MD requests for PSB and SPS
Benchmarking the SPS transverse impedance model: headtail growth rates
A.KOLOMIETS & A.KOVALENKO
News on the TMCI and SPS transverse impedance
CST simulations of VMTSA
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
N. Mounet, G. Rumolo and E. Métral
ATF Fast Kicker R&D at LBNL ILCDR06, Cornell University
G. Arduini, R. Calaga, E. Metral, G. Papotti, G. Rumolo, B. Salvant, R
Agenda Lessons from TU Darmstadt New total wakes with CST 2010
E. Metral, G. Rumolo, B. Salvant, C. Zannini (CERN – BE-ABP-LIS)
Beam impedance of 63mm VM with unshielded Bellows
Simulations and RF Measurements of SPS Beam Position Monitors (BPV and BPH) G. Arduini, C. Boccard, R. Calaga, F. Caspers, A. Grudiev, E. Metral, F. Roncarolo,
W. Bartmann, M. Benedikt, E. Métral, D. Möhl, G. Rumolo and B. Salvant
LHC impedance: Comparison between phase 1 and IR3MBC – follow-up
Simulating transition crossing in the PS with HeadTail
HBP impedance calculations
Status of the EM simulations and modeling of ferrite loaded kickers
CERN-SPS horizontal instability
LHC collimation review follow-up Impedance with IR3MBC option & comparison with phase 1 tight settings N. Mounet, B. Salvant and E. Métral Acknowledgements:
EM Simulation of wakes in BSRT beampipe with extraction mirror
Presentation transcript:

Update on SPS BPM impedance B. Salvant for the 2008 impedance team

Reference: BPH and 96 BPV in the SPS Low frequency imaginary impedance for a BPH : Zlong/n ~ 1 mΩ, Zx=- 0.1 kΩ/m and Zy=2 kΩ/m. Separate simulations for a BPV: Zlong/n~0.5mΩ, Zy= 0.1 kΩ/m and Zx= 0.2 kΩ/m.

Modelled structure for the BPH All materials are perfect conductors (except the ceramic spacers) In fact: - Electrodes + pipe should be in Stainless Steel - Casing should be in Anticorodal Ultrarelativistic beams Rs=|V|^2/Plosses

BPH longitudinal (with material losses) fres (GHz) Q Rs (“center”) in Ohm Rs/Q In Ohm

BPH vertical (with material losses) fres (GHz) Q Rs (“center”) in Ohm Rs (y=2mm) in Ohm Abs(DeltaRs(y=2)) /Deltay in Ohm/m Abs(DeltaRs(y=2)) /Deltay/Q in Ohm/m

BPH horizontal (with material losses) fresQ Rs (“center”) Rs (x=2mm) Abs(DeltaRs) /Deltay Abs(DeltaRs) /Deltay/Q Quite insignificant change of transverse displacement on shunt impedance

BPV

From PhD thesis…

BPV (with material losses) fresQ Rs (“center”) In Ohm Rs(center) /Q In Ohm Rs (y=2mm) In Ohm Abs(DeltaRs(y=2)) /Deltay In Ohm/m Abs(DeltaRs(y=2)) /Deltay/Q In Ohm/m Rs (x=2mm) In Ohm Abs(DeltaRs) /Deltay In Ohm/m Abs(DeltaRs) /Deltay/Q In Ohm/m Longitudinalvertical horizontal

Effect on the beam  Headtail simulations Simulations done at the time with small longitudinal emittance (0.15 eVs) All BPMs are lumped in one location accounting for the respective beta functions. Linear longitudinal restoring force No direct space charge

BPMs alone (vertical plane)

BPMs alone (horizontal plane)

Summary Effect of impedance of BPH and BPV is small on transverse single bunch dynamics Longitudinal modes : – Rs~1 to 10 k Ω – R/Q~ 5 to 20 Ω – Larger for BPHs than BPVs – Frequencies above 1 GHz Transverse modes: – Modes at 0.5 GHz (vertical for BPH) and 0.7 GHz (horizontal for BPV) – Rs~1 to 20 kΩ/m – R/Q~ 5 to 50 Ω/m

However… fres (GHz) Q Rs (“center”) in Ohm Rs/Q In Ohm ?

15 Effect of matching the impedance at electrodes coaxial ports in Particle Studio simulations (BPH) Electrode coaxial port Modes are damped by the “perfect matching layer” at the coaxial port Short bunch (1 cm rms) SPS bunch (20 cm rms) Importance to match the BPM electrodes!

BPH fresQ Rs (“center”) Rs(center) /Q Rs (y=2mm) Abs(DeltaRs(y=2)) /Deltay Abs(DeltaRs(y=2)) /Deltay/Q Rs (x=2mm) Abs(DeltaRs) /Deltay Abs(DeltaRs) /Deltay/Q Longitudinalvertical horizontal

Longitudinal Frequency (GHz) Rs (Ohm) (PEC) Q (PEC) R/Q (Ohm) Time domain (CST PS) Frequency domain eigenmode solver at the peaks (CST MWS)

Dipolar vertical impedance (PEC) Frequency Rs (Ohm) (PEC) at y=1mm Rs (Ohm) (PEC) at y=4 mm Q (PEC) Rs/Q (Ohm/m)

Longitudinal (with losses) Frequency Rs (Ohm) (PEC) Rs (Ohm) (with losses) Q (PEC) Q (with losses) R/Q (Ohm) Electrodes + pipe  Stainless Steel Casing  Anticorodal