Causality in special relativity

Slides:



Advertisements
Similar presentations
The 4 important interactions of photons
Advertisements

ON TIME An Introduction into the theory behind Albert Einsteins Special Relativity.
Relativistic mechanics
Classical Doppler Shift Anyone who has watched auto racing on TV is aware of the Doppler shift. As a race car approaches the camera, the sound of its engine.
Cutnell/Johnson Physics 7th edition
Phy107 Fall 2006 From last time… Einstein’s Relativity ◦ All laws of physics identical in inertial ref. frames ◦ Speed of light=c in all inertial ref.
The Lorentz transformation equations Once again Ś is our frame moving at a speed v relative to S.
The work-energy theorem revisited The work needed to accelerate a particle is just the change in kinetic energy:
Homework #2 3-7 (10 points) 3-15 (20 points) L-4 (10 points) L-5 (30 points)
Linear Momentum and Collisions
The laws of physics are the same in any inertial (non- accelerating) frame of reference Galileo & Einstein would both agree (at terrestrial speeds.) F=ma.
Center of Mass and Linear Momentum
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
1 Tutorial Reminder Please download the tutorial from the course web page and try them out Tutorial class will be conducted on 12 DEC 03 (Friday) Submit.
January 9, 2001Physics 8411 Space and time form a Lorentz four-vector. The spacetime point which describes an event in one inertial reference frame and.
Physics 334 Modern Physics Credits: Material for this PowerPoint was adopted from Rick Trebino’s lectures from Georgia Tech which were based on the textbook.
Module 5Relativity of Velocity and Acceleration1 Module 5 Relativity of Velocity and Acceleration The velocity transforms follow directly from the Lorentz.
The Lorentz transformations Covariant representation of electromagnetism.
Further Logistical Consequences of Einstein’s Postulates
Conservation of momentum is one of the most fundamental and most useful concepts of elementary physis Does it apply in special relativity? Consider the.
Center of Mass and Linear Momentum Center of Mass Systems of Particles Solid Objects Linear Momentum Collisions and Impulse Elastic, Inelastic and Perfectly.
Linear Momentum and Collisions
VECTORS AND THE GEOMETRY OF SPACE 12. VECTORS AND THE GEOMETRY OF SPACE So far, we have added two vectors and multiplied a vector by a scalar.
Relativistic Kinetic Energy
Momentum, Impulse, And Collisions
Ch. 8 Momentum and its conservation
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Module 3Special Relativity1 Module 3 Special Relativity We said in the last module that Scenario 3 is our choice. If so, our first task is to find new.
MA4248 Weeks 1-3. Topics Coordinate Systems, Kinematics, Newton’s Laws, Inertial Mass, Force, Momentum, Energy, Harmonic Oscillations (Springs and Pendulums)
The Special Theory of Relativity. Galilean-Newtonian Relativity Definition of an inertial reference frame: One in which Newton’s first law is valid Earth.
1 Relativity H4: Some consequences of special relativity.
1 1.Einstein’s special relativity 2.Events and space-time in Relativity 3. Proper time and the invariant interval 4. Lorentz transformation 5. Consequences.
 Newtonian relativity  Michelson-Morley Experiment  Einstein ’ s principle of relativity  Special relativity  Lorentz transformation  Relativistic.
1 Momentum and Its Conservation Or How I Learned to Love Collisions.
The Theory of Special Relativity Ch 26. Two Theories of Relativity Special Relativity (1905) –Inertial Reference frames only –Time dilation –Length Contraction.
1 1.Einstein’s special relativity 2.Events and space-time in Relativity 3. Proper time and the invariant interval 4.Lorentz transformation Einstein’s special.
Chapter 8 Momentum and Collisions. Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with.
Physics 2170 – Spring Review 1 Last homework is due tomorrow at 12:50pm Final exam is on Saturday from.
Momentu m. Importance of Momentum. Momentum is a corner stone concept in Physics. It is a conserved quantity. That is, within a closed isolated system.
Chapter 7 Energy of a System.
Module 6Aberration and Doppler Shift of Light1 Module 6 Aberration and Doppler Shift of Light The term aberration used here means deviation. If a light.
Astronomy 1143 – Spring 2014 Lecture 18: Special Relativity.
Wed., Sept. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 12, 2012 Dr. Jaehoon Yu Spacetime Diagram&
SPECIAL THEORY OF RELATIVITY (CONT). I : MASS AND ENERGY Einstein reworked Newton’s laws of mechanics using his newly discovered relativistic formulae.
Module 10Energy1 Module 10 Energy We start this module by looking at another collision in our two inertial frames. Last time we considered a perfectly.
Unit 13 Relativity.
Consequences of Special Relativity Simultaneity: Newton’s mechanics ”a universal time scale exists that is the same for all observers” Einstein: “No universal.
Special Relativity Physics 102: Lecture 28 Make sure your grade book entries are correct.
Module 1Newtonian Relativity1 Module 1 Newtonian Relativity What do we mean by a “theory of relativity”? Let’s discuss the matter using conventional terminology.
Physics 2170 – Spring Special relativity Homework solutions will be on CULearn by 5pm today. Next weeks.
Relativistic mechanics -- Scalars -- 4-vectors -- 4-D velocity -- 4-momentum, rest mass -- conservation laws -- Collisions -- Photons and Compton scattering.
Essential idea: The relativity of space and time requires new definitions for energy and momentum in order to preserve the conserved nature of these laws.
SPECIAL THEORY OF RELATIVITY. Inertial frame Fig1. Frame S’ moves in the +x direction with the speed v relative to frame S.
The new invariants Energy and momentum in relativity Electric and Magnetic fields What does “mass” mean? QUIZ at 1:20.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
1 Review: Special Relativity – Chapter 1 Postulates of relativity: 1. All physical laws are the same in all inertial reference frames 2. The speed of light.
Causality in special relativity
4-vectors: Four components that Lorentz transform like ct, x, y, z.
A –Level Physics: Further Mechanics- Inelastic and Elastic Collisions
Linear Momentum and Collisions
PHYS 3313 – Section 001 Lecture #9
PHYS 3313 – Section 001 Lecture #6
Special Theory of Relativity
Compton Effect and de Broglie Waves
Work AP Physics C.
ENGINEERING MECHANICS
Chapter 37 Special Relativity
Intro to Special Relativity
2.11: Relativistic Momentum Because physicists believe that the conservation of momentum is fundamental, we begin by considering collisions where.
Presentation transcript:

Causality in special relativity --The ladder and barn paradox -- Lorentz transformation in Spacetime diagram: --Causality -- Nothing can travel faster than C

1. The pole and barn paradox If v=0.866c,  = 2, l(pole) =10m In frame of barn, the pole should fit in the barn, l =20m In frame of pole, the barn is shorter,  = 2, l(barn) =5 m, the situation is even worse, the pole can’t fit into the barn at all They cannot be both right!! --Let’s assume the doors of the barn are kept open in usual state, and are designed in such a way that it can be triggered by passing of the pole to close and then open again immediately after, so that the pole can keep a constant motion passing through the barn. --The back door of the barn: will close when the front of pole just approaches the back door, then open again immediately and the front door will close just when the rear end of pole passes it and open again immediately.

two doors close at different times. two doors close Simultaneously. Barn’s frame: Pole’ frame t0 = 0 t’0 = 0 Back door closes then opens t1 =38.49ns, x1=0 (10m/0.886c) Back door closes then opens t’ 1= 19.25ns (5m/0.866c) Front door closes and then open t2= 38.49ns, x2 =10 Front door closes and then open: t’2 =76.98ns, (20m/0.886c) pole moves out t3 = 2*38.49=76.98ns pole moves out: t’3 = 19.25+76.98=96.23ns 10 m 5 m 20 m 10 m two doors close at different times. two doors close Simultaneously. By Lorentz Transformation: The back door closes: The front door closes: --The surprising result is that the back gate is seen to close earlier, before the front of the pole reaches it. --The door closings are not simultaneous in Pole’s frame, and they permit the pole to pass through without hitting either doors.

2. Lorentz transformation in Spacetime diagram: C t ’ x ’ S’ C t x a) How to set the second RF in the space time diagram of the first frame? --The Ct’ and x’ cannot point in just any odd direction because they must be oriented such that the second observer (S’) also measures speed c for the light pulse. A B S --They have to point in this way shown in blue lines: C t ’ x ’ S’ We have derived L-Transformation, which relates two sets of spacetime Coordinates of two different RFs for the same one Event. How to express LT in spacetime diagram? We label the space and time axes for the first observer x, t, the worldline of a light Pulse propagation is drawn as the angle bisector of the first quadrant (half light cone), how to put the space time axes for the second observer? Let's label the space and time axes for the second observer by x´ and ct´, and choose their zeros to coincide with the point at which the pulse was emitted . In order for second observer to measure the speed of light to be c, the distance x´ covered in time t´ must be ct´. This means that the lengths A and B must be equal. The only way this can be true is if the primed axes are tilted at equal angles as shown above. b) How to measure with respect to axes which are not right angles to one another ? --The diagram in the right shows the set of all points (in purple) with some particular value of x´.

c) How is relativity of simultaneity described in space time diagram? Ct’’ x’’ C t ’ x ’ S’ Ct x C t ’ x ’ S’ Ct x Increasing speed d) what happens if the relative speed of the observers is larger? The two events shown occur at the same time t as measured by the first observer (because they lie on a line parallel to the x axis). But the two events don’t occur at the same time t´ as measured by the second observer. Let's label the axes for a third observer (going faster than the second one) by x´´ and ct´´. The point with x´´=0 covers even more ground in a given time interval than did the point with x´=0. Thus, the ct´´ axis (the set of all points with x´´=0) is inclined even more towards the light one than the ct´ axis is, as shown in the above right figure. ´The point with x´´=0 covers even more ground in a given time interval than did the point with x´=0. Thus, the ct´´ axis (the set of all points with x´´=0) is inclined even more towards the light cone than the ct´ axis is, as shown in the above right figure.

Two such events are said to be causally connected. 3. Causality Causality means that cause precedes effect : an ordering in time which every observer agrees upon. Q: Whether it is possible to change the order of cause and effect just by viewing two events from a different frame. A: two events can only be cause and effect if they can be connected to one another by something moving at speed less than or equal to the speed of light. Two such events are said to be causally connected. Diagrammatically, event B is causally connected to event A if B lies within or on the light cone centered at A: Inspired by the discussion of the relativity of simultaneity, you may be wondering ……. A little bit more work will convince you that the answer is ‘no’. tB > tA, B occurs after A A B C t x Can we perform a Lorentz transformation such that tB < tA, B occurs before A?

x x Here’s a representative case: A B C t X’ C t ’ t'B > t’A, B occurs after A In contrast, let’s suppose that it were possible to go into a frame moving faster than light. X ‘ Then the ct´ axis would tilt past the light cone, and the order of events could be reversed (B could occur at a negative value of t´): A B C t x C t ‘ t'B < t’A, B occur before A But it is not true for v >c.

4. Nothing can travel faster than C It’s also easy to show that if a body were able to travel faster than the speed of light, some observers would observe causality violationsEffects would precede their causes. Assume a person is born at event A and travels faster than the speed of light to event B, where he dies. His world line is shown in red on the left The death occurs after the birth. Another observer In S’: B X C t C t ‘ X’ A S’ A X B C t S According to the observer in the inertial frame, all is well. The death occurs at a value of t which is greater than that of the birth. Now consider another observer in motion with respect to the inertial frame shown above, such that the second observer’s axes are oriented as shown: In S’, the death occurs at a value of t´ which is less than that of the birth, as shown by the dashed line in the last figure. The person dies before he is born, violating causality. We see that the speed limit of a body is the consequence of Causality. Such causality violations are not observed experimentally. This is evidence that bodies cannot travel faster than the speed of light

Relativistic mechanics --Scalars -- 4-vectors -- 4-D velocity -- 4-momentum, rest mass -- conservation laws -- Collisions -- Photons and Compton scattering -- Velocity addition (revisited) and the Doppler shift -- 4-force

1. Scalars A scalar is a quantity that is the same in all reference frames, or for all observers. It is an invariant number. E.g., But the time interval ∆t, or the distance ∆x between two events, or the length l separating two worldlines are not scalars: they do not have frame-independent values. 2. 4-vectors This 4-vector defined above is actually a frame-independent object, although the components of it are not frame-independent, because they transform by the Lorentz transformation. Before we discuss Relativity Kinematics, a revision on the properties of different types of quantities is necessary. Between any two distinct events A and B in spacetime, there is a time difference ct and three coordinate difference x, y and z. These four numbers can be written as a vector ~x with four components, which is called a 4-vector: In this sense the points and 3-vector are frame-independent or coordinate-free objects, and it is in the same sense that events and 4-vectors are frame-independent objects. E.g., in 3-space, the Different observers set up different coordinate systems and assign different coordinates to two points C and L, say Canterbury and London. --They may assign different coordinates to the point of the two cites --They agree on the 3-displacement r separating C and L., the distance between the two points, etc.

With each 4-displacement we can associate a scalar the interval (s)2 along the vector. The interval associated with the above defined 4-vector is Because of the similarity of this expression to that of the dot product between 3-vectors in three dimensions, we also denote this interval by a dot product and also by and we will sometimes refer to this as the magnitude or length of the 4-vector. --We can generalize this dot product to a dot product between any two 4-vectors --When frames are changed, 4-displacement transform according to the Lorentz transformation, and obeys associativity over addition and commutativity : ii) A 4-vector multiplied or divided by a scalar is another 4-vector

3. 4-velocity In 3-dimensional space, 3-velocity is defined by where ∆t is the time it takes the object in question to go the 3-displacement ∆ r. Can we put the 4-displacement in place of the 3-displacement r so that we have However, this in itself won't do, because we are dividing a 4-vector by a non-scalar (time intervals are not scalars); the quotient will not transform according to the Lorentz transformation. The fix is to replace ∆t by the proper time ∆ corresponding to the interval of the 4-displacement; the 4-velocity is then What is the 3+1-dimensional analog of velocity? We want a 4-vector so we want a four-component object that transforms according to the Lorentz transformation. Note the sign for 3-vector and 4-vector. The naive 3+1-dimensional generalization would be to put the 4-displacement where are the components of the 3-velocity

Although it is unpleasant to do so, we often write 4-vectors as two-component objects with the rest component a single number and the second a 3-vector. In this notation --What is the magnitude of The magnitude must be the same in all frames because is a 4-vector. Let us change into the frame in which the object in question is at rest. In this frame It is a scalar so it must have this value in all frames. You can also show this by calculating the dot product of You may find this a little strange. Some particles move quickly, some slowly, but for all particles, the magnitude of the 4-velocity is c. But this is not strange, because we need the magnitude to be a scalar, the same in all frames. If you change frames, some of the particles that were moving quickly before now move slowly, and some of them are stopped altogether. Speeds (magnitudes of 3-velocities) are relative; the magnitude of the 4-velocity has to be invariant.

4. 4-momentum, rest mass and conservation laws In spacetime 4-momentum is mass m times 4-velocity --Under this definition, the mass must be a scalar if the 4-momentum is going to be a 4-vector. --The mass m of an object as far as we are concerned is its rest mass, or the mass we would measure if we were at rest with respect to the object. --Again, by switching into the rest frame of the particle, or by calculationg the magnitude we find that 4-momentum, we can show: As with 4-velocity, it is strange but true that the magnitude of the 4-momentum does not depend on speed. Just as in non-relativistic 3-space, where 3-momentum was defined as mass times 3-velocity… However, by Einstein's principle, all the laws of physics must be true in all Uniformly moving reference frames. Why introduce all these 4-vectors, and in particular the 4-momentum? --all the laws of physics must be same in all uniformly moving reference frames --only scalars and 4-vectors are truly frame-independent, relativistically invariant conservation of momentum must take a slightly different form. --In all interactions, collisions and decays of objects, the total 4-momentum is conserved (of course we don’t consider any external force here).

We are actually re-defining E and to be: --Furthermore, We are actually re-defining E and to be: You better forget any other expressions you learned for E or p in non-relativistic mechanics. A very useful equation suggested by the new, correct expressions for E and Taking the magnitude-squared of Furthermore, its time component is energy E/c and its spatial components Make up a correct, relativistic expression for the 3-momentum p. Those other expressions are only good when speeds are much smaller than the speed of light. We get a relation between m, E and which, after multiplication by c2 and rearrangement becomes This is the famous equation of Einstein's, which becomes when the particle is at rest

For a single particle: 4-momenum before an action = that after In the low-speed limit i.e., the momentum has the classical form, and the energy is just Einstein's famous mc2 plus the classical kinetic energy mv2/2. But remember, these formulae only apply when v << c. 5. Conservation laws In the low v, we should be able to reconstruct the non-relativistic expressions for energy E and momentum p. Conservation of 4-momentum is just like conservation of 3-momentum in non-relativistic mechanics. For a single particle: 4-momenum before an action = that after For a multi-particle system: Summed over All the 4-momenta of all the components of the whole system before interaction Summed over all the 4-momenta of all the components of the whole system after interaction

energy and 3-momentum are conserved. 5. Collisions In non-relativistic mechanics collisions divide into two classes: elastic inelastic energy and 3-momentum are conserved. only 3-momentum is conserved In relativistic mechanics 4-momentum, and in particular the time component or energy, is conserved in all collisions; No distinction is made between elastic and inelastic collisions. Before the collision After the collision M’ m It is now time to put conservation of 4-momentum into use by solving some physics problems. In inelastic …. Energy is not conserved because some of the initial kinetic energy of the bodies or particles gets lost to heat or internal degrees of freedom. As we will see, this is because the correct, relativistic expression we now use for energy takes all these contributions into account. Non-relativiistic theory gives: M’=2m, v’ =v/2 By conservation of 4-momentum before and after collsion, which means that the two 4-vectors are equal, component by component,

The ratio of these two components should provide v’/c; The magnitude of should be M’ c; we use --the mass M’ of the final product is greater than the sum of the masses of its progenitors, 2m. --So the non-relativistic answers are incorrect, Q: Where does the extra rest mass come from? A: The answer is energy. In this classically inelastic collision, some of the kinetic energy is lost. But total energy is conserved. Even in classical mechanics the energy is not actually lost, it is just converted into other forms, like heat in the ball, or rotational energy of the final product, or in vibrational waves or sound travelling through the material of the ball.

Strange as it may sound, this internal energy actually increases the mass of the product of the collision in relativistic mechanics. The consequences of this are strange. For example, a brick becomes more massive when one heats it up. Or, a tourist becomes less massive as he or she burns calories climbing the steps of the Effiel Tower. All these statements are true, but it is important to remember that the effect is very very small unless the internal energy of the object in question is on the same order as mc2. For a brick of 1 kg, mc2 is 1020 Joules, or 3 *1013 kWh, a household energy consumption over about ten billion years (roughly the age of the Universe!) For this reason, macroscopic objects (like bricks or balls of putty) cannot possibly be put into states of relativistic motion in Earth-bound experiments. Only subatomic and atomic particles can be accelerated to relativistic speeds, and even these require huge machines (accelerators) with huge power supplies.

6. Photons and Compton scattering 6.1 properties of photon i) Can something have zero rest mass? From  E = p c (p is the magnitude of the 3-momentum) Substitute E=pc into v = p c2/E = c So massless particles would always have to travel at v = c, the speed of light. Strange?? Photons, or particles of light, have zero rest mass, and this is why they always travel at the speed of light. ii) The magnitude of a photon's 4-momentum If we blindly substitute m = 0 into Einstein's equation, We find that E = p c for a particle with zero rest mass () This was beautifully predicted and tested in the famous Compton scattering experiment. We outline the theory behind this experiment here. but this does not mean that the components are all zero. --The time component squared, E2/ c2, is exactly cancelled out by the sum of the space components squared, --Thus the photon may be massless, but it carries momentum and energy, and it should obey the law of conservation of 4-momentum.

We therefore want to derive an expression for Q’ as a function of . 6.2 Compton scattering. The idea of the experiment is to beam photons of known momentum Q at a target of stationary electrons,and measure the momenta Q’of the scattered photons as a function of scattering angle. We therefore want to derive an expression for Q’ as a function of . Before the collision the 4-momenta of the photon and electron are: after they are: A photon of initial 3-momentum magnitude Q (or energy Qc) approaches an electron of mass m that is essentially at rest. The photon scatters off the electron, leaving at some angle to the original direction of motion, and with some new momentum Q’ (or energy Qc). The electron leaves at some other angle and some speed v.. …where we have aligned coordinates so the initial direction of the photon is the x-direction, and the scatter is in the x-y plane. The conservation law is For all photons and for all electrons Also, in this case And: Equation (a) becomes:

But by conservation of energy, ( −1)mc is just Q−Q’, and (a − b)/ab is just 1/b−1/a, so we have what we are looking for: This prediction of special relativity was confirmed in a beautiful experiment by Compton (1923) and has been reconfirmed many times since by undergraduates in physics lab courses. In addition to providing quantitative confirmation of relativistic mechanics, this experimental result is a demonstration of the fact that photons, though massless, carry momentum and energy. Quantum mechanics tells The energy E of a photon is related to its wave frequency by E = h Then so we can rewrite the Compton scattering equation in its traditional form:

7. Particle decay and pair production An elementary particle of rest mass M decays from rest into a photon and a new particle of rest mass M/2, Find its velocity. M M/2 For 3-momentum conservation, the particle moves in x direction, and the photon moves in –x direction. By momentum conservation: Two equation, two unknowns Eliminate the frequency ……… between (1) and (2) (2) Into (1): Solve for u:

7.2 Pair production (gamma photon can not be converted to e- and e+ Show that the following pair production cannot occur without involvement of other particles. e- e+ Let m be the rest mass of electrons and u, v the 3-velocities of electron and positron. Sub. (3) into (2): In reality, the gamma ray is affected by the p Sub. (3) into (1): Compare (4) and (5): For ux and vx < c (6) can not be satisfied Pair production needs an additional particle to carry off some momentum.

8 Velocity addition (revisited) and the Doppler shift In S, a particle of mass m moves in the x-direction at speed vx, so its 4-momentum is In S’ moving at speed v, the 4-momentum of the particle: The fact that the 4-momentum transforms according to the Lorentz transformation makes it very useful for deriving the velocity addition law we find in previous lectures. Now switch to a new frame S’ moving at speed −v2 in the x-direction. In this frame the 4-momentum is This is a much simpler derivation than that found before.

8.2 Photon makes a angle from x axis)  Q(fobs ) S y x z Q’(frest ) S’ y’ x’ z’ v ’ Equate each component on both side:

Doppler effect from:

Aberration of light from: 1 2 3 Light rays emitted by source in S’ Light rays observed in S When v is very large so that =0.9, and cosobs =0.9, obs =26 http://www.anu.edu.au/Physics/Savage/TEE/site/tee/learning/aberration/aberration.html

9. 4-force We recall the 4-velocity and 4-momentum are defined in terms of derivatives with respect to proper time rather than coordinate time t . The definitions are Where is spacetime position and m is rest mass if we want to define a 4-vector form of acceleration , or a 4-vector force , we will need to use Also, if the rest mass m of the object in question is a constant (not true if the object in question is doing work, because then it must be using up some of its rest energy!), The 4-force is only brought up here to whet the reader's appetite. i.e., if the rest mass is not changing then and are orthogonal. In 3+1-dimensional spacetime, orthogonality is something quite different from orthogonality in 3-space: it has nothing to do with 90 angles.