THE STATE UNIVERSITY OF NEW JERSEY RUTGERS La 1-x Sr x TiO 3 photoemission.

Slides:



Advertisements
Similar presentations
Calcul mental multiplications et divisions par multiplications par 0,1 0,01 0,001...
Advertisements

Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
Materials-286K 15 th December, 2014 Correlations between structure and transport in BaTiO 3 Santosh Raghavan Materials Department, University of California,
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Dynamical Mean Field Theory from Model Hamiltonian Studies of the Mott Transition to Electronic Structure Calculations Gabriel Kotliar Physics Department.
Collaborators: Ji-Hoon Shim, G.Kotliar Kristjan Haule, Physics Department and Center for Materials Theory Rutgers University Uncovering the secrets of.
Elemental Plutonium: Electrons at the Edge The Mott transition across the actinide series. Gabriel Kotliar Physics Department and Center for Materials.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Insights into real materials : DMFT at work. From theoretical solid state physics to materials science.
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
DMFT approach to many body effects in electronic structure. Application to the Mott transition across the actinide series [5f’s]. G.Kotliar Phyiscs Department.
Elemental Plutonium: Electrons at the Edge Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium UT July 2003.
Correlation Effects in Itinerant Magnets : Towards a realistic Dynamical Mean Field Approach Gabriel Kotliar Physics Department Rutgers University In Electronic.
Electronic Structure Near the Mott transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Urbana-Champaign, 2008 Band structure of strongly correlated materials from the Dynamical Mean Field perspective K Haule Rutgers University Collaborators.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Electronic Structure of Correlated Materials : a DMFT Perspective
Dynamical Mean Field Theory for Electronic Structure Calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Kristjan Haule, Physics Department and Center for Materials Theory
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Dynamical Mean Field Theory in Electronic Structure Calculations:Applications to solids with f and d electrons Gabriel Kotliar Physics Department and Center.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Applications of DMFT to correlated electrons.
Dynamical Mean Field Theory DMFT and electronic structure calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Colloquium.
Towards a Realistic DMFT based Theoretical Transport and Spectroscopy of Correlated Solids G.Kotliar Physics Department Center for Materials Theory Rutgers.
Optical Properties of Strongly Correlated Electrons: A Dynamical Mean Field Approach G. Kotliar Physics Department and Center for Materials Theory Rutgers.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)
Towards Realistic Electronic Structure Calculations of Correlated Materials Exhibiting a Mott Transition. Gabriel Kotliar Physics Department and Center.
Dynamical Mean Field Theory, Mott transition and Electronic Structure of Actinides Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Dynamical Mean Field Theory and Electronic Structure Calculations Gabriel Kotliar Center for Materials Theory Rutgers University.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Spectral Density Functional: a first principles approach to the electronic structure of correlated solids Gabriel Kotliar Physics Department and Center.
First Principles Investigations of Plutonium Americium and their Mixtures using Dynamical Mean Field Theory Washington February 5-8 (2007). Gabriel.Kotliar.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline, Collaborators, References Introduction to extensions of DMFT for applications to electronic structure.
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Jerusalem Winter.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Dynamical Mean Field Theory Approach to the Electronic Structure Problem of Solids Gabriel Kotliar Physics Department and Center for Materials Theory.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Periodic table. Anthony R. West, Solid State Chemistry and its applications.
Materials 286K Class 12, Experimental techniques: Resistivity Ultrathin Bi films. “The onset of superconductivity in homogeneous.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Specific heat jump near the onset of co-existence with antiferromagnetsism.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
3/25/2015PHY 752 Spring Lecture 241 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 23:  Transport phenomena – Chap. 17.
금속 - 절연체 전이 (MIT) 현상의 규명 및 응용 김현탁 박사 ( 한국전자통신연구원 )
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Electronic structure of the SiO2 slab
Alvaro ROJO-BRAVO LPTMS URM 8626, Université Paris-Sud, Orsay, France
Specific heat of iron-based high-Tc superconductors
Unit 3 Review (Calculator)
Bonding and Electronic Structure of Reconstructed Surface Alloys
AROUND THE WORLD +ADDITION
Calculate 9 x 81 = x 3 3 x 3 x 3 x 3 3 x 3 x 3 x 3 x 3 x 3 x =
AROUND THE WORLD -SUBTRACTION
New Possibilities in Transition-metal oxide Heterostructures
Two to 20 years: female patients, continued.
Presentation transcript:

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS La 1-x Sr x TiO 3 photoemission

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS (Tokura et. Al. 1993)A doped Mott insulator:La x Sr 1-x O 3

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS DMFT calculation U near the Mott transition, Rozenberg et.al 94

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS LaSrTiO3 photoemission

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hall Coefficient, electron like.

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Specific Heat Titanates