RHIC physics and AdS/CFT Amos Yarom, Munich TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA A A A A A A A together.

Slides:



Advertisements
Similar presentations
Gauge-Gravity Duality: A brief overview
Advertisements

The fast life of holographic mesons (Rowan Thomson, Andrei Starinets & David Mateos) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.
Transport coefficients from string theory: an update Andrei Starinets Perimeter Institute Wien 2005 workshop.
1 Unveiling Jet Topology via Multi- Particle Correlations Unveiling Jet Topology via Multi- Particle Correlations N. N. Ajitanand Nuclear Chemistry, SUNY,
1 Momentum Broadening of Heavy Probes in Strongly Couple Plasmas Jorge Casalderrey-Solana Lawrence Berkeley National Laboratory Work in collaboration with.
Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arXiv: (S. Khlebnikov, G. Michalogiorgakis, M.K.) Quantum Gravity.
Understanding the Quark-Gluon Plasma via String Theory Hong Liu Massachusetts Institute of Technology HL, Krishna Rajagopal, Urs A. Wiedemann hep-ph/ ,
Heavy ion collisions and AdS/CFT Amos Yarom With S. Gubser and S. Pufu.
Energy Loss of a Heavy Quark from AdS/CFT Christopher Herzog University of Washington, Seattle November 2006.
A derivation of the source term induced by a fast parton from the quark energy-momentum tensor Bryon Neufeld, LANL Winter Workshop on Nuclear Dynamics.
6/1/07 William Horowitz CERN Heavy Ion Forum 1 Possible String Theoretic Deviations from pQCD in Heavy Quark Energy Loss at LHC William Horowitz Columbia.
AdS/CFT Correspondence and Some Applications An amateur’s point of view Hai-cang Ren ( Rockefeller & CCNU )
Jet quenching at RHIC and LHC from finite endpoint momentum strings Andrej Ficnar Columbia University Hard Probes 2013 November 5, 2013 Andrej Ficnar,
Richard Seto University of California, Riverside 2010 APS April Meeting Thurgood Marshall East Feb 13, 2010 *aka AdS5/CFT experimentalist 10:45 am 1.
Spectral functions for holographic mesons with Rowan Thomson, Andrei Starinets [arXiv: ] TexPoint fonts used in EMF. Read the TexPoint manual before.
Holographic description of heavy-ions collisions Irina Aref’eva Steklov Mathematical Institute, Moscow 7th MATHEMATICAL PHYSICS MEETING: Summer School.
Holographic Description of Quark-Gluon Plasma Irina Aref'eva Steklov Mathematical Institute, RAN, Moscow JINR, Dubna March 19, 2014.
Holographic description of heavy-ions collisions
GAUGE/GRAVITY, THERMALISATION AND ENERGY LOSS Why, when and how do we use gravity? Wilke van der Schee Supervisors: Gleb Arutyunov, Thomas Peitzmann, Koenraad.
Holographic Superconductors
Entanglement interpretation of black hole entropy in string theory Amos Yarom. Ram Brustein. Martin Einhorn.
1 Energy Loss of a Rotating Quark from Gauge-String Duality K. Bitaghsir Fadafan Shahrood U. of Technology First IPM meeting on LHC physics April 20-24,
Jets in N=4 SYM from AdS/CFT Yoshitaka Hatta U. Tsukuba Y.H., E. Iancu, A. Mueller, arXiv: [hep-th] (JHEP) Y.H., T. Matsuo, arXiv: [hep-th]
Heavy-quark potential from AdS/CFT 侯 德 富 华中师范大学粒子物理研究所 两岸粒子物理与宇宙学研讨会, 重庆, 2012 年 5 月.
Light quarks in AdS/CFT can be modeled by strings with one endpoint ending on a D7-brane in the bulk of AdS 5. A possible way to model a light quark-anti.
QGP and Hadrons in Dense medium: a holographic 2nd ATHIC based on works with X. Ge, Y. Matsuo, F. Shu, T. Tsukioka(APCTP), archiv:
6/26/07 William Horowitz SQM pQCD vs. AdS/CFT Tested by Heavy Quark Energy Loss William Horowitz Columbia University Frankfurt Institute for Advanced.
Thermal spectral functions and holography Andrei Starinets (Perimeter Institute) “Strong Fields, Integrability and Strings” program Isaac Newton Institute.
Conical Flow induced by Quenched QCD Jets Jorge Casalderrey-Solana, Edward Shuryak and Derek Teaney, hep- ph/ SUNY Stony Brook.
Sera Cremonini University of Michigan Probing Strongy Coupled Gauge Theories with AdS/CFT: Higher Derivative Corrections to  /s In collaboration with:
Holographic Models for High-Tc superconductors Jiunn-Wei Chen (NTU) w/ Ying-Jer Kao, Debaprasad Maity, Wen-Yu Wen and Chen-Pin Yeh (talk largely based.
Light quark jet quenching in AdS/CFT Andrej Ficnar Columbia University Hot Quarks 2012 October 15, 2012.
Transport coefficients in strongly coupled gauge theories: insights from string theory Andrei Starinets Perimeter Institute for Theoretical Physics.
Heavy Quarkonium melting with Holographic Potential Defu Hou (CCNU,Wuhan) SQM2008, Beijing, Oct. 6-10, 2008 With Hai-cang Ren, JHEP 0801:029,2008.
Heavy Quarkonium States with the Holographic Potential Defu Hou (CCNU) From Strings to Things, Seattle, May 2008 With Hai-cang Ren, JHEP 0801:029,2008.
1 AdS/CFT Calculations of Parton Energy Loss Jorge Casalderrey-Solana Lawrence Berkeley National Lab. In collaboration with D. Teaney.
The fast life of holographic mesons Aninda Sinha Perimeter Institute, Canada. with Robert Myers arXiv:0802.nnnn Quark Matter 2008, Jaipur, India.
Transverse Momentum Broadening of a Fast Quark in a N=4 Yang Mills Plasma Jorge Casalderrey-Solana LBNL Work in collaboration with Derek Teany.
Holographic Thermalization of Quark Gluon Plazma Irina Aref'eva Steklov Mathematical Institute, Moscow II Russian-Spanish Congress Particle and Nuclear.
AdS/CFT and Heavy Ion Collisions at RHIC and LHC
Heavy-quark potential at subleading order from AdS/CFT Defu Hou Huazhong Normal University, Wuhan Hou, Ren, JHEP0801:029 ( 2008 ) Chu, Hou,Ren, JHEP0908:004.
11/02/07 William Horowitz Heavy Quark Workshop, LBNL 1 Falsifying AdS/CFT Drag or pQCD Heavy Quark Energy Loss with A+A at RHIC and LHC William Horowitz.
1/22/08 William Horowitz Heavy Quark Physics in Nucleus-Nucleus Collisions, UCLA 1 Shock Treatment: Heavy Quark Drag in Novel AdS Geometries William Horowitz.
Thermalization of Gauge Theory and Gravitational Collapse Shu Lin SUNY-Stony Brook SL, E. Shuryak. arXiv: [hep-th]
Heavy quark energy loss in pQCD and SYM plasmas Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W. Xiao,
PPG067 Physics Statements Michael P. McCumber and Barbara Jacak August + September, 2006.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Hydrodynamic Flow from Fast Particles Jorge Casalderrey-Solana. E. V. Shuryak, D. Teaney SUNY- Stony Brook.
1 Mach Cones in Quark Gluon Plasma Jorge Casalderrey-Solana Lawrence Berkeley Laboratory.
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
Relating e+e- annihilation to high energy scattering at weak and strong coupling Yoshitaka Hatta (U. Tsukuba) JHEP 11 (2008) 057; arXiv: [hep-ph]
AdS/CFT “Applications” Jorge Casalderrey-Solana LBNL.
Jet Quenching and Quarkonium Dissociation in Heavy Ion Collisions and String Theory Urs Achim Wiedemann CERN PH-TH Department 28 June 2007.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Towards understanding the Quark-Gluon Plasma
F. Dominguez, CM, A. Mueller, B. Xiao and B. Wu, arXiv:
Cyrille Marquet Columbia University
String theory and heavy ion collisions
Andrej Ficnar Columbia University
Ziqiang Zhang Huazhong Normal University
Black Hole Entropy Black holes – a review Black holes in string theory
Studying the strongly coupled N=4 plasma using AdS/CFT
Qualitative Successes of AdS/CFT at RHIC
Comparing numerical evolution with linearisation
Understanding the quark-gluon-plasma using AdS/CFT
Understanding Energy Loss of Heavy Quarks
Presentation transcript:

RHIC physics and AdS/CFT Amos Yarom, Munich TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA A A A A A A A together with: S. Gubser and S. Pufu

Overview The quark gluon plasma Energy g YM 1 ~170 MeV ?

Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT AdS/CFT J. Maldacena

Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT ?

Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark

Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark

Overview The quark gluon plasma N=4 SYM plasma via AdS/CFT Energy loss of a moving quark Summary

The quark gluon plasma at RHIC RELATIVISTICRELATIVISTIC HEAVYHEAVY IONION COLLIDERCOLLIDER

Jet quenching 197 × pTpT

Jet quenching (Phenix, 2005)

Friction coefficient for QCD plasma

N=4 SYM plasma via AdS/CFT AdS/CFT J. Maldacena AdS 5 CFT Empty AdS 5 Vacuum L4/’2L4/’2 g YM 2 N  L 3 /2 G 5 N2N2 J. Maldacena hep-th/

T>0 N=4 SYM plasma via AdS/CFT AdS 5 CFT AdS 5 BH Thermal state L4/’2L4/’2 g YM 2 N  L 3 /2 G 5 N2N2 E. Witten hep-th/ Horizon radiusTemperature Empty AdS 5 Vacuum J. Maldacena hep-th/

AdS Black holes z0z0 z 0 x1x1 x i, t AdS 5 CFT AdS 5 BH Thermal state L4/’2L4/’2 g YM 2 N  L 3 /2 G 5 N2N2 E. Witten hep-th/ Horizon radiusTemperature z0z0 1/  T

AdS/CFT J. Maldacena Friction coefficient AdS 5 CFT J. Maldacena hep-th/ Massive parton Endpoints of an open string z0z0 z 0 ? (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)

Friction coefficient AdS 5 CFT J. Maldacena hep-th/ Massive parton Endpoints of an open string z0z0 z 0 ? (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)

Friction coefficient z0z0 z 0 F F (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)

Friction coefficient AdS/CFT J. Maldacena (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)

Measurables which have been compared Friction coefficient Energy density Shear viscosity Jet quenching parameter (Policastro, Son, Starinets, 2001) (Liu, Rajagopal, Wiedemann, 2006) (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) (Gubser, Klebanov, Peet, 1996)

Measuring jets



Measuring di-jets 

Measuring di-jets (STAR, )

Measuring di-jets (STAR, )  = 

Measuring di-jets (STAR, )  » 

Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)

Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)

Mach cones and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)  » 

Mach cones in N=4 SYM AdS 5 CFT z0z0 z 0

The energy momentum tensor AdS 5 CFT AdS black hole Metric fluctuations z0z0 z 0 G mn  z,k)

The energy momentum tensor z0z0 z 0

Gauge choice Cylindrical symmetry Tensor modes Vector modes

The energy momentum tensor Tensor modes Vector modes + first order constraint

The energy momentum tensor Tensor modes Vector modes + first order constraint Scalar modes + 3 first order constraints

Energy density for v=3/4 Over energy Under energy

v=0.75 v=0.58 v=0.25

Small momentum approximations 1-3v 2 > 0 (subsonic)

Small momentum approximations 1-3v 2 > 0 (subsonic) Re(K 1 ) Im(K 1 ) v decreases v increases X 1 > 0 X 1 < 0

Small momentum approximations 1-3v 2 < 0 (supersonic) Re(K 1 ) Im(K 1 ) 1-3v 2 = 0 v increases ? ? X 1 > 0 X 1 < 0 X1X1

Small momentum approximations 1-3v 2 < 0 (supersonic) 1-3v 2 > 0 (subsonic)

Small momentum approximations

Re(K 1 ) Im(K 1 ) c s 2 =1/3  s =1/3

Multi-scale analysis Large distances – linear hydrodynamic picture valid Intermediate distances – nonlinear hydrodynamics Short momenta – Strong dissipative effects

Energy density for v=3/4

0

v=0.75 v=0.58 v=0.25

Large momentum approximations

Wakes

Mach cones, wakes and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)

Mach cones, wakes and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006) (STAR, )

The Poynting vector z0z0 z 0

V=0.25 S1S1 S?S? V=0.58 V=0.75 (Gubser, Pufu, AY, 2007)

Re(K 1 ) Im(K 1 ) Small momentum asymptotics Sound Waves ? (Gubser, Pufu, AY, 2007) X1X1

Small momentum asymptotics (Gubser, Pufu, AY, 2007)

The poynting vector V=0.25 S1S1 S?S? V=0.58 V=0.75 (Gubser, Pufu, AY, 2007)

Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006 Gubser, Pufu, AY, 2007)

Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006 Gubser, Pufu, AY, 2007) z0z0 z 0 FF ? Just been calculated

Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006, Gubser, Pufu, AY, 2007)

Energy analysis (Friess, Gubser, Michalogiorgakis, Pufu, 2006, Gubser, Pufu, AY, 2007) =

Universality (Gubser, AY,2007) z0z0 z 0

Universality (Gubser, AY, 2007) z0z0 0 z

Summary N=4 SYM plasma exhibits a Mach cone and a wake at large distances, where the hydrodynamic approximation is valid. The laminar wake behind the quark is a universal feature of theories with string duals, and the ratio of energy carried by the wake to the drag force is 1:v 2. This wake is difficult to reconcile with current experimental data.