V. Lapoux DAPNIA/SPhN EURISOL 16-20 Jan. 06 Physics & Instrumentation Trento, 16-20 January 2006 Drip-lines : limit of nuclear binding, large isospin Exploration.

Slides:



Advertisements
Similar presentations
SYNTHESIS OF SUPER HEAVY ELEMENTS
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Exploring the drip lines: where are the proton and neutron drip lines exotic decay modes: - two-proton radioactivity -  -delayed multi-particle emission.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Measurement of the GMR and the GQR in unstable nuclei using the MAYA active target C. Monrozeau (Ph. D), E. Khan, Y. Blumenfeld.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Task10 : Physics & Instrumentation Subtask: Single Particle & Collective Properties ( Contributors: Angela Bonaccorso, Roy Lemmon, Valerie Lapoux, Yorick.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Study of exotic nuclei.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
CR RESR NESR  Light-ion scattering Elastic (p,p), ( ,  ) … Inelastic (p,p’), ( ,  ’)... Charge exchange (p,n), ( 3 He,t), (d, 2 He) … Quasi-free (p,pn),
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Rare ISotope INvestigation at GSI Status of the relativistic beam campaign Introduction Fast beam physics program Experimental methods Status and perspectives.
Review of PHYSICAL REVIEW C 70, (2004) Stability of the N=50 shell gap in the neutron-rich Rb, Br, Se and Ge isotones Y. H. Zhang, LNL, Italy David.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
First simulations of FAZIA Napoli 3-5 September 2007.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
1 Nuclear physics and Astrophysics at CERN (10/10-13/2005) Nuclear Physics and Astrophysics at CERN Details of physics interests and methods for studies.
Nuclear Level Densities Edwards Accelerator Laboratory Steven M. Grimes Ohio University Athens, Ohio.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
Single-neutron structure of neutron-rich nuclei near 132 Sn Jolie A. Cizewski Department of Physics & Astronomy Rutgers University.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Experimental studies around N=28… What’s next? ESNT – 4-6/02/2008 Saclay 1)Various experimental approaches for one physics case 2) From data to theoretical.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
1 Beta Counting System Li XiangQing, Jiang DongXing, Hua Hui, Wang EnHong Peking University
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
AGATA AGATA Advanced Gamma-Ray Tracking Array Next-generation spectrometer based on  -ray tracking Radioactive and stable beams, high recoil velocities.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
I. MARTEL SGFDC UNIVERSITY OF HUELVA JULY 2007 Collaboration: University of Huelva, Spain (coordinator) GSI-Darmstadt, Germany. University of.
Probed with radioactive beams at REX-ISOLDE Janne Pakarinen – on behalf of the IS494 collaboration – University of Jyväskylä ARIS 2014 Tokyo, Japan Shapes.
Spectroscopic factors from direct reactions A unique information to study nuclear shell structure ESNT, february 2008 A. Obertelli, CEA-IRFU/SPhN To which.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Fusion of light halo nuclei
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
SuperCHICO; a 4π heavy-ion detector C.Y. Wu and D. Cline An arsenal of auxiliary charged-particle detectors must be an integral component of GRETA in order.
g-ray spectroscopy of the sd-shell hypernuclei
Technical solutions for N=Z Physics David Jenkins.
Spectroscopy studies around 78 Ni and beyond N=50 via transfer and Coulomb excitation reactions J. J. Valiente Dobón (INFN-LNL, Padova,Italy) A. Gadea.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Peripheral collisions Hans-Jürgen Wollersheim
Neutron Detection with MoNA LISA
Variable Mode High Acceptance Spectrometer
Study of the resonance states in 27P by using
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Recent Highlights and Future Plans at VAMOS
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Status and perspectives of the LNS-FRIBS facility
Presentation transcript:

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Physics & Instrumentation Trento, January 2006 Drip-lines : limit of nuclear binding, large isospin Exploration : new structures EXOTIC NUCLEI Tests : nuclear modelling & interactions V NN (T z ) Probe the structure & spectroscopy at large isospin  Measure unbound states Tools & detection devices  n,  p Extension of the systematics of neutron excitation along isotopic chains Unbound states in dripline nuclei

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Nuclear structure towards the drip-lines : phenomena to explore & to understand Neutron skins halo,clusters Change in shell structure New magic numbers Local properties (N,Z) 4 He 6 He halo 8 He 4 He Neutron skin Evolution of structure at large isospin ? 2006 : what is known ? 2016 : area to explore ?

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Search for low-lying resonances and study of neutron excitations MUST : Y.Blumenfeld et al., NIM A421, 421 (‘99) CATS : S. Ottini et al., NIM A431, 476 (‘99). beam MUST (8 in a wall) + CATS (p,p’) probe Particle spectroscopy A Z (p,p’) p’ AZAZ A Z*  A-1 Z +n … p Beam profile : CATS 1 & 2 Detection of the light charged recoil particle in a dedicated array  the strip-wall device MUST bound excited states close to thr : E. Khan et al., 20 O(p,p’) PLB 490 (‘00) 45 C. Jouanne, V. L., et al., 10,11 C(p,p’) PRC 72, (’05) Modification of the usual shell structure new magic numbers Neutron- rich 20,22 O

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Prototype of (p,p’) & direct reactions at low energy : 8 He(p,p’) SPIRAL beam MUST+CATS structure of 8 He :  + 4n? S n =2.5 S 4n =3.1 S 2n = He 3.6MeV ? >>> Specific tools direct reactions in inverse kinematics and missing mass method Unbound excited states, low-lying resonances of weakly-bound nuclei : A.Lagoyannis et al., 6 Ganil, PLB 518, 27 (‘01). 6 He : 2n-halo 8 He : neutron-skin Resonances of 7,8 He Exotic structures

V. Lapoux DAPNIA/SPhN EURISOL Jan He 8 He excitation energy spectrum 7 He 1n transfer : 8 He(p,d) 7 He g.s He 2n Transfer 8 He(p,t) 6 He 8 He 15.6 MeV/n F. Skaza, PhD thesis SPhN Unbound states studies : what we have learnt from SPIRAL beam E405S experiment, MUST collab. * Large (p,d), (p,t) cross sections DWBA not valid GENERAL framework : Coupled Reactions calc. needed, PLB619, 82 (‘05) Structure of the 8 He nucleus via direct reactions on proton target ± 0.14 MeV Γ = 0.3 ± 0.2 MeV ? 5.4 ± 0.5 MeV Γ = 0.3 ± 0.5 MeV

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Nuclear landscape towards the drip-lines N He 6 Z 8 4 He borromean He C N O H n pp dt 8 He 11 Li F 31 Li Be 14 Be B Which drip-line nuclei have their identity card complete ? Masses, size, densities, neutron excitation, low-lying spectroscopy, Shell structure ? 6 He Drip-line : 8 He neutron-skin

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Nuclear landscape towards the drip-lines N Z 4 He Low-lying resonances ? Neutron skin ? Density Profiles ? New shell effects ? structure of 24 O ? 24 O 23 N 22 C 31 F 30,31,32 Ne 33 Na 34 Mg 38 Mg Next drip-line nuclei ? 37 Na Tarasov97 Sakurai97 Notani02, Lukyanov02 43 Si

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 neutrons fp sd d 5/2 d 3/2 s 1/2 stability f 7/2 p 3/2 sd-fp 20 N = 16 Z=14 30 Si N = 20 8 N = 8 p 3/2 p 1/2 s 1/2 Shell effects far away from stability with new generations of RIB s Local properties (Z,N) N=34,40,70 instead of N=50,82 ?  EURISOL systematics of neutron excitations vs N Search for new magic numbers neutrons fp sd d 5/2 d 3/2 s 1/2 drip-line N = 16, Z=8, 24 O f 7/2 p 3/2 sd-fp N = O N = 16 N = 8 16 N=16  Learnt from 1 st generation of RIBs (1h11/2 - ) (f7/2)

V. Lapoux DAPNIA/SPhN EURISOL Jan ? Zr Sn 78 Ni neutron drip-line known up to Z=8 ( 24 O )… doubly magic stable nuclei doubly magic unstable nuclei ? drip-lines & properties in the vicinity of new doubly magic nuclei ? Explorations of nuclear landscape using SPIRAL2, GSI, EURISOL beams Explorations of nuclear landscape using SPIRAL2, GSI, EURISOL beams FAIR

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Z N 2016 : 2016 : 10 years of exploitation of SPIRAL2 Regions of the chart of nuclei accessible with SPIRAL2 beams Primary beams:  deuterons  heavy ions

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Z N EURISOL the 10 9 /s beams of EURISOL are the 10 4 /s of SPIRAL2 and co. If the beams are new ( 36 Ne ? Ca ?) or rare at present ( 24 O few/s at GANIL, RIKEN) with EURISOL : counting rates less or around /s Will all our beams be as intense as we believe ??? 2016 : 2016 : starting EURISOL beams

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Alpha-clusters states Skin and halos Soft collective modes Evolution of neutron excitation Mn vs N along isotopic chains Exotic shapes and resonances One-particle state Spectroscopic factors Beams Variety A,Z Limit of nuclear binding, I  Z N Going closer to driplines with higher intensities : opened physics fields Which beams ? We want to gain in exoticity Complete the (p,p’) chains O ( 24 O), Ne + Mg, Si, S, Ar +spectroscopy of neutron-rich around N=28, N=40 (new), N=50, N=70 (new) Examples : 38 Ne (if not unbound), Ca, 104 Se (Z=34, N=70) Far..far away

V. Lapoux DAPNIA/SPhN EURISOL Jan S 2n =7.91 S n = Kr 6? MeV ? Calc : M.V. Stoitsov, et al., Phys. Rev. C68, (‘03) Data AME S 2n =8.5 S n = Kr ? 0.67 MeV Similar trend for all neutron-rich EURISOL beams : few bound states

V. Lapoux DAPNIA/SPhN EURISOL Jan mm MUST : ~30cm behind ! ~10cm compactness due to ASIC technology allows particle -  coincidences MUST 1  MUST 2:  factor 3 larger active area  factor 6 smaller volume of PA  better time resolution NEW GENERATION of MUST array NIM A421, 421 (‘99) MUST2 developed by:  DAPNIA/SEDI : µ-electronics R&D ASIC  GANIL  IPN Orsay 6x6 cm 2 Si Strips 300  m Si(Li) 3mm CsI 1.5 cm MUST collaboration : CEA-DAPNIA, GANIL, IPN Orsay Si(Li) 4.5 mm CsI 3 cm 4 x 4 segments Si strips 300  m 100 x 100 mm 2 X, Y, T, E 128X 128Y EE MUST MUr à STrips 2

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Measure a complete set of direct reactions : investigation of nuclear structure form factors (densities) + Neutron excitations via (p,p ’) spectroscopic factors via (d,p) (p,d) transfers Spin & parity via transfer on polarized targets Probes, reactions and beam energies At which energies do we need to accelerate ? Optimize between : Energies required by physics case & experimental difficulties 1. Access to high energy excited states : higher E inc compared to SPIRAL2 2. energy resolution for excitation energies  lower E inc collaboration MUST2 : DAPNIA, GANIL, IPN-Orsay Assets : Assets : beam tracking + LCP arrays E-TOF,E-DE, ID Experimental method Direct reactions Analysis :Microscopic potentials potentials Coupled channels +CDCC ?

V. Lapoux DAPNIA/SPhN EURISOL Jan c.m 40 c.m Structure studies from direct reactions with EURISOL beams (100MeV/n) small uncertainty in Theta(LAB)  huge variation in excitation energies

V. Lapoux DAPNIA/SPhN EURISOL Jan c.m 80 c.m 20 c.m Structure studies from direct reactions with EURISOL beams (25MeV/n)

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 particle spectroscopy, requirements * Angular coverage (FWD and BWD)  4  & Granularity ( Dx ~ Dy ~ 1mm ) * Large Dynamics and Particle Id [ p,d,t, 3,4,6,8 He 6 Li Energies up to ~ 300 MeV tot E-De and E-TOF correlations for identification low E threshold needed ~ < 300 KeV to measure small c.m. angles * Kinematics Reconstruction of the Scattering angle for variable (!) beam optical quality angle & impact on target required * Coupling with Gamma-spectroscopy,  Compacity Means …  array of Si strip telescopes  stage-telescopes Si + SiLi +CSI  For each channel,TAC for TOF, DT (part. det) ~ 500 ps to ~ 1ns start : particle in the Si stage stop : time before target : beam detector  2 beam tracking detectors for x,y, T event by event 1mm x-y, 300 ps DT  ~ 0.5deg 15 cm Intrinsic DE (Si) ~ 50 keV DE resolution (with thin target ~ 1mg/cm 2 ) ~ keV Precision on centroid, bound states ~ 30 keV resonant states ~ keV  ASICs Requirements for improved charged particle spectroscopy Charged-Particle spectroscopy Charged-Particle spectroscopy  needed to explore unbound states  (p,p’), (p,d) (p,t) (d,p) Thin light targets p, d  E ~ 400keV to 1 MeV

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Detection for EURISOL experiments 78 Ni +p  p’ + 78 Ni*  p + 76 Ni + 2n p’ + 78 Ni*  p + 74 Ni + 4n Phase space background due to neutrons produced by decaying unbound states 78 Ni +p  d + 77 Ni unbound?  d + 76 Ni + n d + 77 Ni*  d + 74 Ni + 3n 78 Ni +p   t + 76 Ni  t + 76 Ni *  t + 75 Ni* + n  t + 74 Ni + 2n ID, E vs Theta of LCP 78 Ni(p,p’) 78 Ni* 78 Ni(p,t) 76 Ni 78 Ni(p,d) 77 Ni + A Z ID of forward focused heavy fragments : Spectrometer or SiLi, CSI arrays close to targets ? + neutron detection Low S n, S 2n, S 4n,… Check alpha-neutrons correlations :: needs LCP and neutron devices granularity & efficiency

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Improved detection for EURISOL experiments Steps beyond in the detection : - ASIC technology ( Application Specific Integrated Circuit ) (compacity of all devices) - Mixed detection (gamma+ charged particles +… neutrons) : Ex : Ge + Si + scintillator in a crystal-Ge-Si ball array -Higher multiplicities in LCP arrays (3,4,..) challenges in acquisition systems : synchronize separated arrays & triggers needs to reduce dead time + A,Z ID of heavy fragment in a spectrometer or SiLi CsI array + NEUTRON DETECTION Charged-Particle spectroscopy  needed to explore unbound states Thin light targets p, d  E ~ 400keV to 1 MeV  (p,p’), (p,d) (p,t) + Inverse kinematics : good Energy resolution in Eexc requires : beam profile on target  beam tracking detectors + Gamma-ray spectroscopy Gamma-ray spectroscopy  needed to separate close excited states close excited states Thick target  E ~ 20keV 9 MeV/n 2016 Wishes for Coupled Detection devices

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 EURISOL : specific experiments and beams Exotic structure at the neutron drip-line : Ex : 24 O Ne Complete the systematic studies of neutron excitation vs N from Z=8 to Z=28 chains  EURISOL Cluster structures : alpha-n correlations & molecular bands Ex : 30 Ne : 5 Alpha + 10 n Probes : (p,p’) + transfer reactions + (p,2p)

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 EURISOL : specific experiments and beams Present (1 st generation) intensities : few part/s Needed : (at least) /s MeV/n : enough Looking back in the past ! See multi-nucleon transfer Ex : 9 Be( 13 C, 14 O) 8 He H. Bohlen et al., ZPhysA 330 (’88) 10 Be( 12 C, 14 O) 8 He Th. Stolla et al., ZPhysA 356 (’96) SPIRAL2 production of light exotic nuclei R&D for a 9 Be target allowing 40 kW beam SIMILAR TECHNIQUES FOR EURISOL ?

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 conclusions Means BEAMS OF RARE ISOTOPES Today 1/s, EURISOL /s Means DIRECT PROBES i.E p &d targets, + Polarized p,d DIRECT REACTIONS target: cryogenic D 2 or CD 2 Light charged particle (LCP) detection  -ray detection: future AGATA exotic beam EURISOL EURISOL A Z identification Beam Tracking Devices BTD A+1 Z p E inc ~ MeV/n Nearly (~90%) pure beam

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 Diffusion (p,p’) en cinématique inverse CATS 2 détection du faisceau (x,y,t) Pre-Amps Si Strip 6x6 cm 2 MUST Si Strips 300  m Si(Li) 3mm CsI 1.5 cm détection d’ions légers x,y,E,t) Z & A ( 1,2,3 H, 3,4 He) gamme étendue E  E+  E+E bas seuil (~ 500 keV) Résolution en position  x,  y ~ 1 mm MUST Y. Blumenfeld et al., NIM A421 (‘99) 471 CATS S. Ottini et al., NIM A431 (‘99) 476

V. Lapoux DAPNIA/SPhN EURISOL Jan Information cruciale apportée par les détecteurs de faisceau 11 C (p,p 40,6 MeV/nucléon : l ’effet des CATS sur MUST Analyse : Cédric JOUANNE, Thèse 98-01, CEA-Saclay, DSM/DAPNIA/SPhN C. Jouanne, V. L et al., PRC 72, (’05) précision centroïde ~ 30keV  E* = 750 keV réactions de référence

V. Lapoux DAPNIA/SPhN EURISOL Jan. 06 A Z(p,d) A-1 Z Q = S n (A+1,Z)-S n (d) = S n (A+1,Z) MeV Q(p,d)= S n (d)-S n (A,Z) = S n A Z(p,t) A-2 Z Q(p,t)=S 2n (t)-S 2n (A,Z) = –S 2n Q 8 He(p,t) = 6.34 Ex : Q 8 He(p,d) = S n =2.5 S 4n =3.1 S 2n = He 3.6MeV ? A Z(d,p) A+1 Z Q [ 96 Kr(p,d) ]~ - 2.8MeVQ [ 96 Kr(p,t) ]~ MeV TOOL : TOOL : direct reactions (p,p) (p,d) (p,alpha) & (d,d) (d,p) (d, 3 He) Q 8 He(p,  ) = 3.57MeV Q [ 81 Cu(p,  ) 78 Ni] ~ 7MeV 81 Cu (~ Zn) I ~ 10 5 /s Using the A+3 Z+1 nucleus with higher I to produce and excite A Z For beams I spiral2 > ~ 10 4 /s Typical conditions for transfer reactions  ~ 1mb / sr Beams  pps S ~ % error d  /d  ~ % Beam time ~ 2 weeks S n, S 2n weak : High cross sections for the 1n, 2n transfer compared to elastic + to extend the transfer structure studies  more suitable range of beam E for (d,p) : E ~ MeV/n angular momentum window, selectivity Sn(d,p) MeV/n  L ~ 10 MeV/n  L ~ 3.2