Peng Ruan, Thomas Wiegelmann, Bernd Inhester Sami Solanki, Li Feng Max Planck Institute for Solar System Research Germany Modeling the 3D Coronal Plasma.

Slides:



Advertisements
Similar presentations
MT4510 Solar Theory Thomas Neukirch
Advertisements

Forward Modeling from Simulations: Full-Sun and Active Regions Cooper Downs ISSI Workshop on Coronal Magnetism (2 nd Meeting), March
3D Inversion of the Magnetic Field from Polarimetry Data of Magnetically Sensitive Coronal Ions M. Kramar, B. Inhester Max-Planck Institute for Solar System.
Jaroslav Dudík 1,2 Elena Dzifčáková 3, Jonathan Cirtain 4 1 – DAMTP-CMS, University of Cambridge 2 – DAPEM, FMPhI, Comenius University, Bratislava, Slovakia.
Orsay, th SECCHI Consortium Meeting: Wiegelmann et al.: SECCHI-3D reconstruction software Wiegelmann, Inhester, Feng, Ruan, Thalmann, Podlipnik.
Institut für Plasmaforschung Universität Stuttgart Long-distance correlation of fluctuations under strong ExB shear in TJ-K P. Manz, M. Ramisch, U. Stroth.
TOWARDS A REALISTIC, DATA-DRIVEN THERMODYNAMIC MHD MODEL OF THE GLOBAL SOLAR CORONA Cooper Downs, Ilia I. Roussev, Bart van der Holst, Noe Lugaz, Igor.
Extrapolation vs. MHD modeling Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions at the SDO workshop / Monterey Feb 2006.
Physics of fusion power Lecture 11: Diagnostics / heating.
Free Magnetic Energy: Crude Estimates by Brian Welsch, Space Sciences Lab, UC-Berkeley.
MSU Team: R. C. Canfield, D. W. Longcope, P. C. H. Martens, S. Régnier Evolution on the photosphere: magnetic and velocity fields 3D coronal magnetic fields.
NJIT-seminar Newark, NJITWiegelmann et al: Nonlinear force-free fields 1 Nonlinear force-free extrapolation of coronal magnetic.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Magnetic Field Extrapolations And Current Sheets B. T. Welsch, 1 I. De Moortel, 2 and J. M. McTiernan 1 1 Space Sciences Lab, UC Berkeley 2 School of Mathematics.
Predicting Coronal Emissions with Multiple Heating Rates Loraine Lundquist George Fisher Tom Metcalf K.D. Leka Jim McTiernan AGU 2005.
Winds of cool supergiant stars driven by Alfvén waves
Solar Physics & upper Atmosphere Research Group University of Sheffield A possible method for measuring the plasma density profile along coronal loops.
1 Synoptic Maps of Magnetic Field from MDI Magnetograms: polar field interpolation. Y. Liu, J. T. Hoeksema, X. P. Zhao, R. M. Larson – Stanford University.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
Preliminary Results from Nonlinear Field Extrapolations using Hinode Boundary Data Marc DeRosa (LMSAL), on behalf of the NLFFF Team* WG1 ~ SHINE 2007 *Karel.
Dissipation of Alfvén Waves in Coronal Structures Coronal Heating Problem T corona ~10 6 K M.F. De Franceschis, F. Malara, P. Veltri Dipartimento di Fisica.
Magnetic Stereoscopy of the Coronal Loops L.Feng, T.Wiegelmann, B.Inhester, S.Solanki, P.Ruan Max-Planck Institute for Solar System Research.
Paper Review Special Issue of Solar Physics (I) STEREO Science Results at Solar Minimum Volume 259, Numbers 1-2 / October 2009 Yan Xu 2010 Nov. 02.
Axions from the Sun? H. S. Hudson SSL, UC Berkeley
February 26, 2007 KIPAC Workshop on Magnetism Modeling/Inferring Coronal And Heliospheric Field From Photospheric Magnetic Field Yang Liu – Stanford University.
MHD Modeling of the Large Scale Solar Corona & Progress Toward Coupling with the Heliospheric Model.
Solar X-ray Searches for Axions H. S. Hudson SSL, UC Berkeley
Hydrostatic modelling of active region EUV and X-ray emission J. Dudík 1, E. Dzifčáková 1,2, A. Kulinová 1,2, M. Karlický 2 1 – Dept. of Astronomy, Physics.
1 What is the best way to use the chromospheric field information in coronal field extrapolation? Current state of art are nonlinear force-free extrapolations.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Radioastronomical Remote Sensing of Turbulence and Current Sheets in the Solar Corona Steven R. Spangler Department of Physics and Astronomy University.
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
Analysis of Coronal Heating in Active Region Loops from Spatially Resolved TR emission Andrzej Fludra STFC Rutherford Appleton Laboratory 1.
MAGNETIC TWIST OF EUV CORONAL LOOPS OBSERVED BY TRACE RyunYoung Kwon, Jongchul Chae Astronomy Program, School of Earth and Environmental Science Seoul.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
Can we use nonlinear and selfconsistent models for data analysis? We learned from Prof. Schindler about the importance of nonlinear and selfconsistent.
Extrapolation of magnetic fields
Comparison on Calculated Helicity Parameters at Different Observing Sites Haiqing Xu (NAOC) Collaborators: Hongqi, Zhang, NAOC Kirill Kuzanyan, IZMIRAN,
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
The Sun’s Global Photospheric and Coronal Magnetic Fields Duncan H Mackay Solar Physics Group University of St. Andrews.
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
Modeling Magnetoconvection in Active Regions Neal Hurlburt, David Alexander, Marc DeRosa Lockheed Martin Solar & Astrophysics Laboratory Alastair Rucklidge.
Semi-Empirical MHD Modeling of the Solar Wind Igor V. Sokolov, Ofer Cohen, Tamas I. Gombosi CSEM, University of Michigan Ilia I Roussev, Institute for.
Simulation of stereoscopic EUVI image pairs Markus J. Aschwanden David Alexander Nariaki Nitta Thomas Metcalf Richard Nightingale James Lemen (LMSAL) 2nd.
Newark, Wiegelmann et al.: Coronal magnetic fields1 Solar coronal magnetic fields: Source of Space weather Thomas Wiegelmann, Julia Thalmann,
Using potential field extrapolations of active region magnetic fields, observed by SOHO/MDI, as a representation of a real active region, we apply hydrostatic.
1 3D Sun Loop Trace: A Tool for Stereoscopy of Coronal Loops for STEREO Jean Lorre Jeff Hall Paulett Liewer Parth Sheth Eric DeJong Jet Propulsion Laboratory.
I. INTRODUCTION Gas Pressure Magnetic Tension Coronal loops are thin and bright structure of hot plasma emitting intense radiation in X-ray and EUV. (1)
N. A. Schwadron U. New Hampshire Solar Wind and Coronal Electron Temperature in the Protracted Solar Minimum, the Cycle 24 Mini Maximum, and Over Centuries.
1 Solar stereoscopy - where we are and which developments do we require to progress? Thomas Wiegelmann, Bernd Inhester, Li Feng, Judith de Patoul.
Coronal magnetic fields Thomas Wiegelmann, MPI for Solar-System Research, (Former: MPI für Aeronomie) Katlenburg-Lindau Why are coronal magnetic fields.
IMPRS Lindau, Space weather and plasma simulation Jörg Büchner, MPAe Lindau Collaborators: B. Nikutowski and I.Silin, Lindau A. Otto, Fairbanks.
SDO-meeting Napa, Wiegelmann et al: Nonlinear force-free fields 1 Nonlinear force-free field modeling for SDO T. Wiegelmann, J.K. Thalmann,
On the Structure of Magnetic Field and Radioemission of Sunspot-related Source in Solar Active Region T. I. Kaltman, V. M. Bogod St. Petersburg branch.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
ESMP-14 Dublin Li Feng, Bernd Inhester, Yuming Wang, Fang Shen, Chenglong Shen, Weiqun Gan 1. Max Planck Institute for Solar System Research, Germany 2.
3-D Magnetic Field Configuration of the 2006 December 13 Flare Yang Guo & Ming-De Ding Department of Astronomy, Nanjing University, China Thomas Wiegelmann.
1 Yongliang Song & Mei Zhang (National Astronomical Observatory of China) The effect of non-radial magnetic field on measuring helicity transfer rate.
Magnetic Helicity and Solar Eruptions Alexander Nindos Section of Astrogeophysics Physics Department University of Ioannina Ioannina GR Greece.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
Considerations on using Solar-B observations to model the coronal field over active regions Karel Schrijver, Marc DeRosa, Ted Tarbell SOT-17 Science Meeting;
Coronal Magnetic Field – Force-Free Field and Topology CSI 769 / ASTR 769 Lect. 04, Feb. 14 Spring 2008 References: Aschwanden: Chap. 5.3 – 5.6 Articles:
SDO-meeting Napa, Wiegelmann et al: Nonlinear force-free fields 1 A brief summary about nonlinear force-free coronal magnetic field modelling.
Tracking Waves from Sunspots Provides New Solar Insight Zhau, J et. al
Mechanisms for losses during Edge Localised modes (ELMs)
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Exploring Large-scale Coronal Magnetic Field Over Extended Longitudes With EUVI EUVI B EIT EUVI A 23-Mar UT Nariaki Nitta, Marc DeRosa, Jean-Pierre.
Targeted Physics Optimization in HSX
Solar and Heliospheric Physics
Coronal Loop Oscillations observed by TRACE
Presentation transcript:

Peng Ruan, Thomas Wiegelmann, Bernd Inhester Sami Solanki, Li Feng Max Planck Institute for Solar System Research Germany Modeling the 3D Coronal Plasma and Magnetic Field from STEREO/SECCHI and Magnetic Surface Data

Outline Methods of Magnetic Field Extrapolation Potential Field Model + Scaling Laws MHS Model

MDI Observation May 11, Jun. 7,

 j ×B=0 j =0, ∇ ×B =0 (Potential field model) j ∥ B, μ 0 j = ∇ ×B =α(r)B (Force-free model)  j ×B− ∇ p−ρ ∇ φ=0 (MHS)

SECCHI, STEREO-A, 4 wavelengths (2006-Dec-04)

Potential Field α=0.0 LFF α=0.1 (1/Solar radius) LFF α=0.5

Scaling Laws E H (s).... heating term E R (s).... radiative loss term E C (s)....conductive term Analytical approximation E H (s)=E 0 exp[-(s-s 0 )/s H ] Temperature.....T=T(s, S H ) Pressure p=p (s, S H ) Density n~p/T Taken from Aschwanden and Schrijver, 2002 E H (s)-E R (s)- E C (s)=0

For reconstruction:

Temperature distribution in the solar corona cut through longitude Ø=40 o

T. Neukirch(1995)’s MHS model j = α B +∇ F(B, φ ) ×∇ φ Force-free part: α B Non force-free part: ∇ F(B, φ ) ×∇ φ ∇ ×B = μ 0 j j ×B − ∇ p−ρ ∇ φ =0

MHS force=0 MHS force>0

The perturbation pressure and density might be larger than the background. This is unreasonable. j ×B− ∇ p−ρ ∇ φ=0 j ×B− ∇ p P −ρ P ∇ φ=0 − ∇ p 0 −ρ 0 ∇ φ=0 Background Perturbation

Relaxation L= ∫ [ B -2 ┃ ( ∇ ×B ) ×B ┃ 2 + ( ∇ ·B ) 2 ]d 3 x T. Wiegelmann, et al (2007)

Summary and Outlook

Thank you

Decomposition of B in spherical harmonics with coefficients a nm, b nm We match the line-of-sight component B●e LoS to observed data D Linear Force-Free Magnetic Field: