What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

Observing Dark Energy SDSS, DES, WFMOS teams. Understanding Dark Energy No compelling theory, must be observational driven We can make progress on questions:
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Cosmological Information Ue-Li Pen Tingting Lu Olivier Dore.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
Progress on Cosmology Sarah Bridle University College London.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Neutrinos and the large scale structure
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
What can we learn from galaxy clustering? David Weinberg, Ohio State University Berlind & Weinberg 2002, ApJ, 575, 587 Zheng, Tinker, Weinberg, & Berlind.
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Large Scale Structure  Matter Perturbations  Beyond Cold Matter  Probes Scott Dodelson PASI 2006.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
University of Pennsylvania Licia Verde The cosmic connection From WMAP web site.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Ignacy Sawicki Université de Genève Understanding Dark Energy.
Subaru Galaxy Surveys: Hyper-Suprime Cam & WFMOS (As an introduction of next talk by Shun Saito) Masahiro Takada (Tohoku Univ., Sendai, Japan) Sep
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Large-Scale Structure & Surveys Max Tegmark, MIT.
Simulations by Ben Moore (Univ. of Zurich)
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The Cosmic Microwave Background
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
CMB, lensing, and non-Gaussianities
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Dark Energy From the perspective of an American theorist fresh from the recent Dark Energy Survey Collaboration Meeting Scott Dodelson.
Planck mission All information and images in these slides can be found browsing through
Cosmology With The Lyα Forest
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The History of the Universe in 60 Minutes
Springel, Frenk & White 2006, Nature, 440, 11
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Cosmology from Large Scale Structure Surveys
Images: M. Blanton. Images: M. Blanton Figures: M. Blanton & SDSS.
Inflation and the cosmological density perturbation
Measurements of Cosmological Parameters
Presentation transcript:

What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 What have we learned so far?

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Flyabout + SDSS movie

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Brief History of the Universe

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy What do we want to measure? Cosmological functions   (z), G(z,k), P s (k), P t (k)

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions   (z), G(z,k), P s (k), P t (k) H(z)

Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Cosmological functions H(z) P(k,z) To 1st order:

SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, H = dlna/dt, H 2   Assumes k=0 Vanilla rules OK!

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Measuring clustering (That’s where the neutrino signal is)

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom z = 1000

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom z = 2.4 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom z = 0.8 Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom Mathis, Lemson, Springel, Kauffmann, White & Dekel 2001 z = 0

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies LSS

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies LSS Clusters CMB Tegmark & Zaldarriaga, astro-ph/ updates

History (Figure from Wayne Hu) (Figure from WMAP team)

History

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom Guth & Kaiser 2005, Science

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies LSS Clusters CMB Tegmark & Zaldarriaga, astro-ph/ updates

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom Lyman Alpha Forest Simulation: Cen et al 2001 You Quasar Ly  F

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 GRAVITATIONAL LENSING: A1689 imaged by Hubble ACS, Broadhurst et al 2004

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 distorti on Lensing

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Measuring cosmological parameters

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Neutrinos

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom How neutrinos suppress cosmic fluctuation growth If all the matter can cluster:  a Net growth until today: a today /a primordial ≈ 4700 p ≈ 4700 e -4f Power suppression: P(k)/P(k) primordial ≈ e -8f f ≈ ∑ m i /94.4 eV  dm ≈ ∑ m i /12 eV, So 1 eV cuts power in half. If only a fraction  * can cluster:  a p, where p=[(1+24  * )-1]/4≈  * 3/5 ≈ (1-f ) 3/5 (Bond, Efstathiou & Silk 1980) Distinguish neutrinos from dark energy by time and scale dependence.

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl CMB

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl CMB + P(k)

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Cmbgg OmOl CMB + Ly  F + P(k)

THE FUTURE It's tough to make predictions, especially about the future. Yogi Berra

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Boom zoom Now: WMAP CMB + SDSS gals & Ly  F: ∑ m i < 0.4 eV E.g., Hu & Tegmark astro-ph/ , Hu astro-ph/ , Hannestad et al, astro-ph/ Planck CMB + LSST lensing:  (∑ m i ) ~ 0.04 eV Seljak et al, astro-ph/ , Goobar et al astro-ph/ Future:

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Galaxy clustering progress

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 Why are LRGs so useful?

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 SDSS sphere anim

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/

LSS Our observable universe

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS Quasars

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS LRG’s

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS Common galaxies

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”:

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS LRG’s Also more strongly clustered

Max Tegmark Dept. of Physics, MIT FACT ISSworkshop BU, March 8, 2006 LSS Why LRG’s are “just right”: LRG’s have more statistical power than 2 million regular gals (Eisenstein et al 2005)