Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.

Slides:



Advertisements
Similar presentations
Boundary Detection - Edges Boundaries of objects –Usually different materials/orientations, intensity changes.
Advertisements

Lecture 2: Convolution and edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Edge Detection CSE P 576 Larry Zitnick
Edge and Corner Detection Reading: Chapter 8 (skip 8.1) Goal: Identify sudden changes (discontinuities) in an image This is where most shape information.
Edge Detection. Our goal is to extract a “line drawing” representation from an image Useful for recognition: edges contain shape information –invariance.
EE663 Image Processing Edge Detection 1
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Lecture 4 Edge Detection
Canny Edge Detector.
Edge detection. Edge Detection in Images Finding the contour of objects in a scene.
Announcements Mailing list: –you should have received messages Project 1 out today (due in two weeks)
Lecture 2: Edge detection and resampling
Edge Detection Today’s reading Forsyth, chapters 8, 15.1
Lecture 3: Edge detection, continued
Filters and Edges. Zebra convolved with Leopard.
Lecture 2: Image filtering
Announcements Since Thursday we’ve been discussing chapters 7 and 8. “matlab can be used off campus by logging into your wam account and bringing up an.
Edge Detection Today’s readings Cipolla and Gee –supplemental: Forsyth, chapter 9Forsyth Watt, From Sandlot ScienceSandlot Science.
The blue and green colors are actually the same.
CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lecture 10 – Edges and Pyramids 1.
Edge Detection.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30 – 11:50am.
CS559: Computer Graphics Lecture 3: Digital Image Representation Li Zhang Spring 2008.
Local invariant features Cordelia Schmid INRIA, Grenoble.
Discrete Images (Chapter 7) Fourier Transform on discrete and bounded domains. Given an image: 1.Zero boundary condition 2.Periodic boundary condition.
Lecture 2: Edge detection CS4670: Computer Vision Noah Snavely From Sandlot ScienceSandlot Science.
Lecture 3: Edge detection CS4670/5670: Computer Vision Kavita Bala From Sandlot ScienceSandlot Science.
CS 1699: Intro to Computer Vision Edges and Binary Images Prof. Adriana Kovashka University of Pittsburgh September 15, 2015.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection From Sandlot ScienceSandlot Science.
Edge Detection Today’s reading Cipolla & Gee on edge detection (available online)Cipolla & Gee on edge detection Szeliski, Ch 4.1.2, From Sandlot.
Image gradients and edges Tuesday, September 1 st 2015 Devi Parikh Virginia Tech Disclaimer: Many slides have been borrowed from Kristen Grauman, who may.
Instructor: S. Narasimhan
CS654: Digital Image Analysis Lecture 24: Introduction to Image Segmentation: Edge Detection Slide credits: Derek Hoiem, Lana Lazebnik, Steve Seitz, David.
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
CSE 185 Introduction to Computer Vision Edges. Scale space Reading: Chapter 3 of S.
EE 4780 Edge Detection.
Many slides from Steve Seitz and Larry Zitnick
Brent M. Dingle, Ph.D Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Edge Detection.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
CSE 6367 Computer Vision Image Operations and Filtering “You cannot teach a man anything, you can only help him find it within himself.” ― Galileo GalileiGalileo.
Announcements Project 0 due tomorrow night. Edge Detection Today’s readings Cipolla and Gee (handout) –supplemental: Forsyth, chapter 9Forsyth For Friday.
Lecture 04 Edge Detection Lecture 04 Edge Detection Mata kuliah: T Computer Vision Tahun: 2010.
COMPUTER VISION D10K-7C02 CV05: Edge Detection Dr. Setiawan Hadi, M.Sc.CS. Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran.
Lecture 8: Edges and Feature Detection
Finding Boundaries Computer Vision CS 143, Brown James Hays 09/28/11 Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li,
CS558 C OMPUTER V ISION Lecture IV: Image Filter and Edge Detection Slides adapted from S. Lazebnik.
Edges Edges = jumps in brightness/color Brightness jumps marked in white.
Winter in Kraków photographed by Marcin Ryczek
Edge Detection Images and slides from: James Hayes, Brown University, Computer Vision course Svetlana Lazebnik, University of North Carolina at Chapel.
Miguel Tavares Coimbra
Edge Detection slides taken and adapted from public websites:
MAN-522: Computer Vision Edge detection Feature and blob detection
Image gradients and edges
Edge Detection CS 678 Spring 2018.
Lecture 2: Edge detection
Jeremy Bolton, PhD Assistant Teaching Professor
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Image gradients and edges April 11th, 2017
Review: Linear Systems
Edge Detection Today’s reading
Edge Detection CSE 455 Linda Shapiro.
Edge Detection Today’s reading
Lecture 2: Edge detection
Edge Detection Today’s reading
Edge Detection Today’s readings Cipolla and Gee Watt,
Lecture 2: Edge detection
Winter in Kraków photographed by Marcin Ryczek
IT472 Digital Image Processing
IT472 Digital Image Processing
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Presentation transcript:

Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded in the edges More compact than pixels Ideal: artist’s line drawing (but artist is also using object-level knowledge) Source: D. Lowe

Origin of edges Edges are caused by a variety of factors: depth discontinuity surface color discontinuity illumination discontinuity surface normal discontinuity Source: Steve Seitz

Characterizing edges An edge is a place of rapid change in the image intensity function image intensity function (along horizontal scanline) first derivative edges correspond to extrema of derivative

Derivatives with convolution For 2D function f(x,y), the partial derivative is: For discrete data, we can approximate using finite differences: To implement above as convolution, what would be the associated filter? Source: K. Grauman

Partial derivatives of an image Which shows changes with respect to x? or -1 1

Finite difference filters Other approximations of derivative filters exist: Source: K. Grauman

The gradient points in the direction of most rapid increase in intensity Image gradient The gradient of an image: The gradient direction is given by Source: Steve Seitz The edge strength is given by the gradient magnitude How does this direction relate to the direction of the edge?

Effects of noise Consider a single row or column of the image Plotting intensity as a function of position gives a signal Where is the edge? Source: S. Seitz

Solution: smooth first To find edges, look for peaks in f g f * g Source: S. Seitz

Differentiation is convolution, and convolution is associative: This saves us one operation: Derivative theorem of convolution f Source: S. Seitz

Derivative of Gaussian filter Are these filters separable? x-direction y-direction

Derivative of Gaussian filter Which one finds horizontal/vertical edges? x-direction y-direction

Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales” 1 pixel3 pixels7 pixels Scale of Gaussian derivative filter Source: D. Forsyth

Review: Smoothing vs. derivative filters Smoothing filters Gaussian: remove “high-frequency” components; “low-pass” filter Can the values of a smoothing filter be negative? What should the values sum to? –One: constant regions are not affected by the filter Derivative filters Derivatives of Gaussian Can the values of a derivative filter be negative? What should the values sum to? –Zero: no response in constant regions High absolute value at points of high contrast

The Canny edge detector original image Slide credit: Steve Seitz

The Canny edge detector norm of the gradient

The Canny edge detector thresholding

The Canny edge detector thresholding How to turn these thick regions of the gradient into curves?

Non-maximum suppression Check if pixel is local maximum along gradient direction, select single max across width of the edge requires checking interpolated pixels p and r

The Canny edge detector thinning (non-maximum suppression) Problem: pixels along this edge didn’t survive the thresholding

Hysteresis thresholding Use a high threshold to start edge curves, and a low threshold to continue them. Source: Steve Seitz

Hysteresis thresholding original image high threshold (strong edges) low threshold (weak edges) hysteresis threshold Source: L. Fei-Fei

Recap: Canny edge detector 1.Filter image with derivative of Gaussian 2.Find magnitude and orientation of gradient 3.Non-maximum suppression: Thin wide “ridges” down to single pixel width 4.Linking and thresholding (hysteresis): Define two thresholds: low and high Use the high threshold to start edge curves and the low threshold to continue them MATLAB: edge(image, ‘canny’); J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8: , 1986.A Computational Approach To Edge Detection

Edge detection is just the beginning… Berkeley segmentation database: image human segmentation gradient magnitude

BackgroundTexture Shadows Low-level edges vs. perceived contours Kristen Grauman, UT-Austin