1 Introduction to Data Mining Instructor: Y.T. Wang ( 王耀德 ) Office: 主顧 686 Phone: (04)26328001#18114 Office hours:

Slides:



Advertisements
Similar presentations
2015/6/1Course Introduction1 Welcome! MSCIT 521: Knowledge Discovery and Data Mining Qiang Yang Hong Kong University of Science and Technology
Advertisements

CSE115 Introduction to Computer Science I Dr. Carl Alphonce 219 Bell Hall CSE 115 Introduction to Computer Science for Majors I1.
SAK 5609 DATA MINING Prof. Madya Dr. Md. Nasir bin Sulaiman
CSE 670 Embedded System Design Using FPGAs Prof. Richard E. Haskell 115 Dodge Hall.
Web Information Retrieval and Extraction Chia-Hui Chang, Associate Professor National Central University, Taiwan
1 Knowledge Management. 2 Instructor: Y.-T. Wang ( 王耀德 ) Office: 主顧 686 Tel.: (04) # Office hours.
Fundamentals, Design, and Implementation, 9/e SI654 Database Application Design Instructor: Dragomir R. Radev Winter 2005.
CS 331 / CMPE 334 – Intro to AI CS 531 / CMPE AI Course Outline.
1 Data Mining Techniques Instructor: Ruoming Jin Fall 2006.
Introduction to Data Mining with Case Studies
Introduction to WEKA Aaron 2/13/2009. Contents Introduction to weka Download and install weka Basic use of weka Weka API Survey.
CS 5941 CS583 – Data Mining and Text Mining Course Web Page 05/cs583.html.
Data Warehousing and Data Mining IS-427 مستودعات البيانات و التنقيب عنها نال 427.
Pong by Atari, released to public 1975 CSE 381 – Advanced Game Programming Introduction.
CIT 858: Data Mining and Data Warehousing Course Instructor: Bajuna Salehe Web:
OLAM and Data Mining: Concepts and Techniques. Introduction Data explosion problem: –Automated data collection tools and mature database technology lead.
Intelligent Systems Lecture 23 Introduction to Intelligent Data Analysis (IDA). Example of system for Data Analyzing based on neural networks.
Course Title Database Technologies Instructor: Dr ALI DAUD Course Credits: 3 with Lab Total Hours: 45 approximately.
CS525 DATA MINING COURSE INTRODUCTION YÜCEL SAYGIN SABANCI UNIVERSITY.
1 Database Management for Electronic Commerce and EBusiness Walt Scacchi, Ph.D. GSM 274/FEMBA 274 Spring 2002.
Data Mining with Oracle using Classification and Clustering Algorithms Proposed and Presented by Nhamo Mdzingwa Supervisor: John Ebden.
Assoc. Prof. Abdulwahab AlSammak. Course Information Course Title: Artificial Intelligence Instructor : Assoc. Prof. Abdulwahab AlSammak
Data Warehousing/Mining 1 Data Warehousing/Mining Comp 150DW Course Overview Instructor: Dan Hebert.
Database Design CS562 Fall CS562 Database Design Instructor : Professor Chin-Wan Chung Office : Rm 3406 Tel : 3537
Object Oriented Programming (FIT-II) J. H. Wang Feb. 20, 2009.
Information Retrieval and Data Mining (AT71.07) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology.
Introduction of Data Mining and Association Rules cs157 Spring 2009 Instructor: Dr. Sin-Min Lee Student: Dongyi Jia.
6.1 © 2010 by Prentice Hall 6 Chapter Foundations of Business Intelligence: Databases and Information Management.
SE-280 Dr. Mark L. Hornick 1 SE-280 Software Engineering Process Dr. Mark L. Hornick web: myweb.msoe.edu/hornick SE280 info syllabus,
Open Systems and Electronic Commerce
1 AP/ITEC “Systems Analysis and Design, I” Course Introduction Course Introduction [Prof. Peter Khaiter]
資訊科技專案管理 授課教師 : 王耀德 研究室 : 靜宜大學 二研 105 電話 : (04) # Web site:
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
An Evaluation of Commercial Data Mining Proposed and Presented by Emily Davis Supervisor: John Ebden.
General Information 439 – Data Mining Assist.Prof.Dr. Derya BİRANT.
Introduction to Computer Programming (FIT-I pro) J. H. Wang Sep. 17, 2007.
Computing Systems: Organization and Design EE460/CS360/T425.
CPE 432 Computer Design Dr. Walid Abu-Sufah 1CPE 432 Computer Design.
Course Overview for Compilers J. H. Wang Sep. 14, 2015.
Object Oriented Programming (FIT-II) J. H. Wang Jan. 31, 2008.
ITIS 4510/5510 Web Mining Spring Overview Class hour 5:00 – 6:15pm, Tuesday & Thursday, Woodward Hall 135 Office hour 3:00 – 5:00pm, Tuesday, Woodward.
CPE433: Performance Evaluation and Modeling Introduction Dr. Gheith Abandah د. غيث علي عبندة.
Advanced Topics in Computer Networks (Fall 2005) Instructor: Instructor:Dr. Damla Turgut Office: Office:450 ENGR 1 Bldg Office Phone: Office Phone:(407)
CSCE 5073 Section 001: Data Mining Spring Overview Class hour 12:30 – 1:45pm, Tuesday & Thur, JBHT 239 Office hour 2:00 – 4:00pm, Tuesday & Thur,
CEN 137 Computer Literature and Skills INTERNATIONAL BURCH UNIVERSITY DEPARTMENT of INFORMATION TECHNOLOGIES Dr. A. Turan Özcerit
1 Business Systems Analysis and Decision Making ISQS 5340, Summer II, 2006 Instructor: Zhangxi Lin Office: BA 708 Phone:
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
Course Information CSE 2031 Fall Instructor U.T. Nguyen Office: CSE Home page:
Sotarat Thammaboosadee, Ph.D. EGIT563- Data Mining Course Outline.
DATA MINING: LECTURE 1 By Dr. Hammad A. Qureshi Introduction to the Course and the Field There is an inherent meaning in everything. “Signs for people.
Introduction.  Instructor: Cengiz Örencik   Course materials:  myweb.sabanciuniv.edu/cengizo/courses.
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
DATABASE SYSTEM COURSE SYLLABUS Ghulam Imaduddin Informatics Engineering Muhammadiyah Jakarta University Database System by Ghulam I1.
CENG 707 Data Structures and Algorithms
Introduction to Computing
CS 450/550 Operating Systems Loc & Time: MW 1:40pm-4:20pm, 101 ENG
ELECTROMAGNETİC WAVE THEORY
COMP1942 Exploring and Visualizing Data Overview
مستودعات البيانات و التنقيب عنها
CSC 361 Artificial Intelligence
Data Mining: Concepts and Techniques Course Outline
Fundamental of Artificial Intelligence (CSC3180)
Dept. of Computer Science University of Liverpool
Data Mining.
CSCE 4143 Section 001: Data Mining Spring 2019.
Lecture 1a- Introduction
CSE591: Data Mining by H. Liu
Information Retrieval and Data Mining (AT71. 07) Comp. Sc. and Inf
Presentation transcript:

1 Introduction to Data Mining Instructor: Y.T. Wang ( 王耀德 ) Office: 主顧 686 Phone: (04) # Office hours: Wednesday 09:00~13:00

2 Goal The capabilities of both generating and collecting data have been increasing rapidly in the last several decades. Contributing factors include the widespread use of bar codes and popular use of the World Wide Web. The explosive growth in stored data has generated an urgent need for new techniques and automated tools that can intelligently assist us in transforming the vast amounts of data into useful information and knowledge. The course presents an overall picture of data mining, introducing interesting data mining techniques and systems, and discussing applications and research directions.

3 Content Introduction Data warehousing Characterization Association rules Classification Clustering analysis Sequential patterns Web Mining

4 Reference Textbook J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed., Morgan Kaufmann, ( 東華, ) References R.J. Roiger and M.W. Geatz, Data Mining: A Tutorial- Based Primer, Addison-Wesley, G.M. Marakas, Modern Data Warehousing, Mining, and Visualization: Core Concepts, Prentice Hall, 2003.

5 Grade Midterm: 30% Paper presentation: 20% Term project: 30% Participation: 20% Office hours Wednesday 09:00~13:00