Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/0511219.

Slides:



Advertisements
Similar presentations
Improved Simulation of Stabilizer Circuits Scott Aaronson (UC Berkeley) Joint work with Daniel Gottesman (Perimeter)
Advertisements

Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Quantum Information Theory But, we are going to be even more ridiculous later and consider bits written on one atom instead of the present atoms.
Toby Cubitt, Jenxin Chen, Aram Harrow arXiv: and Toby Cubitt, Graeme Smith arXiv: Super-Duper-Activation of Quantum Zero-Error Capacities.
Tony Short University of Cambridge (with Sabri Al-Safi – PRA 84, (2011))
Random non-local games Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis, Dmitry Kravchenko, Juris Smotrovs, Madars Virza University of Latvia.
Quantum Computing MAS 725 Hartmut Klauck NTU
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Gillat Kol (IAS) joint work with Ran Raz (Weizmann + IAS) Interactive Channel Capacity.
Nonlocal Boxes And All That Daniel Rohrlich Atom Chip Group, Ben Gurion University, Beersheba, Israel 21 January 2010.
Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Bell inequality & entanglement
Quantum Computing MAS 725 Hartmut Klauck NTU
Observing the quantum nonlocality in the state of a massive particle Koji Maruyama RIKEN (Institute of Physical and Chemical Research) with Sahel Ashhab.
Stronger Subadditivity Fernando G.S.L. Brandão University College London -> Microsoft Research Coogee 2015 based on arXiv: with Aram Harrow Jonathan.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Quantum communication from Alice to Bob Andreas Winter, Bristol quant-ph/ Aram Harrow, MIT Igor Devetak, USC.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
Quantum Circuits for Clebsch- GordAn and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/ more.
DEFENSE!. Applications of Coherent Classical Communication and Schur duality to quantum information theory Aram Harrow MIT Physics June 28, 2005 Committee:
Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/
A Family of Quantum Protocols Igor Devetak, IBM Aram Harrow, MIT Andreas Winter, Bristol quant-ph/ IEEE Symposium on Information Theory June 28,
General Entanglement-Assisted Quantum Error-Correcting Codes Todd A. Brun, Igor Devetak and Min-Hsiu Hsieh Communication Sciences Institute QEC07.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
NO INPUT IS DETECTED ON RGB1. Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Quantum Communication, Quantum Entanglement and All That Jazz Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Channel Polarization and Polar Codes
Quantum Shannon Theory Patrick Hayden (McGill) 17 July 2005, Q-Logic Meets Q-Info.
Introduction to Quantum Shannon Theory Patrick Hayden (McGill University) 12 February 2007, BIRS Quantum Structures Workshop | 
Is Communication Complexity Physical? Samuel Marcovitch Benni Reznik Tel-Aviv University arxiv
ENTROPIC CHARACTERISTICS OF QUANTUM CHANNELS AND THE ADDITIVITY PROBLEM A. S. Holevo Steklov Mathematical Institute, Moscow.
Entangling without Entanglement T. Cubitt, F. Verstraete, W. Dür, J. I. Cirac “Separable State can be used to Distribute Entanglement” (to appear in PRL.
QCMC’06 1 Joan Vaccaro Centre for Quantum Dynamics, Centre for Quantum Computer Technology Griffith University Brisbane Group theoretic formulation of.
Christian Schaffner CWI Amsterdam, Netherlands Quantum Cryptography beyond Key Distribution Workshop on Post-Quantum Security Models Paris, France Tuesday,
On the Dimension of Subspaces with Bounded Schmidt Rank Toby Cubitt, Ashley Montanaro, Andreas Winter and also Aram Harrow, Debbie Leung (who says there's.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Convolutional Coding for Distillation and Error Correction Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical.
Counterexamples to the maximal p -norm multiplicativity conjecture Patrick Hayden (McGill University) || | | N(½)N(½) p C&QIC, Santa Fe 2008.
1 hardware of quantum computer 1. quantum registers 2. quantum gates.
A limit on nonlocality in any world in which communication complexity is not trivial IFT6195 Alain Tapp.
A brief introduction to Quantum computer
Quantum Information Theory Patrick Hayden (McGill) 4 August 2005, Canadian Quantum Information Summer School.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
The Classically Enhanced Father Protocol
Nawaf M Albadia
Optimal Trading of Classical Communication, Quantum Communication, and Entanglement Mark M. Wilde arXiv: ERATO-SORST Min-Hsiu Hsieh 4 th Workshop.
A generalization of quantum Stein’s Lemma Fernando G.S.L. Brandão and Martin B. Plenio Tohoku University, 13/09/2008.
Coherent Classical Communication Aram Harrow, MIT Quantum Computing Graduate Research Fellow Objective Objective ApproachStatus Determine.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
On Minimum Reversible Entanglement Generating Sets Fernando G.S.L. Brandão Cambridge 16/11/2009.
Multipartite Entanglement and its Role in Quantum Algorithms Special Seminar: Ph.D. Lecture by Yishai Shimoni.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Gillat Kol (IAS) joint work with Anat Ganor (Weizmann) Ran Raz (Weizmann + IAS) Exponential Separation of Information and Communication.
Dualities in quantum information theory Igor Devetak CSI, EE-S, USC quant-ph/
B OUNDS ON E NTANGLEMENT D ISTILLATION & S ECRET K EY A GREEMENT C APACITIES FOR Q UANTUM B ROADCAST C HANNELS Kaushik P. Seshadreesan Joint work with.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
A counterexample for the graph area law conjecture Dorit Aharonov Aram Harrow Zeph Landau Daniel Nagaj Mario Szegedy Umesh Vazirani arXiv:
Simulation and Design of Stabilizer Quantum Circuits Scott Aaronson and Boriska Toth CS252 Project December 10, X X +Z Z +ZI +IX
Non-locality and quantum games Dmitry Kravchenko University of Latvia Theory days at Jõulumäe, 2008.
Fernando G.S.L. Brandão and Martin B. Plenio
Unconstrained distillation capacities of
Presentation transcript:

Erasing correlations, destroying entanglement and other new challenges for quantum information theory Aram Harrow, Bristol Peter Shor, MIT quant-ph/ QIP, 19 Jan 2006

outline General rules for reversing protocols Coherent erasure of classical correlations Disentangling power of quantum operations

qubit[q ! q] |0 i A ! |0 i B and |1 i A ! |1 i B ebit[qq] the state (|0 i A |0 i B + |1 i A |1 i B )/ p 2 cbit[c ! c] |0 i A ! |0 i B |0 i E and |1 i A ! |1 i B |1 i E Everything is a resource cobit[q ! qq] |0 i A ! |0 i A |0 i B and |1 i A ! |1 i A |1 i B resource inequalities super-dense coding: [q ! q] + [qq] > 2[c ! c] In fact, [q ! q] + [qq] = 2 [q ! qq] 2 [q ! qq]

(disentangling power) -[qq] [qq] y = (relation between time-reversal and exchange symmetry) [q à q][q ! q] y = |0 i A |0 i B ! |0 i A and |1 i A |1 i B ! |1 i A (coherent erasure??) [q à qq] (?)[q ! qq] y = Undoing things is also a resource reversalmeaning

[qq ! q] > [q ! q] - [q ! qq] = [q ! qq] - [qq] = ([q ! q] - [qq]) / 2 What good is coherent erasure?  |0 i A +  |1 i A !  |0 i A |0 i B +  |1 i A |1 i B (using [q ! qq]) !  |0 i B +  |1 i B (using [qq ! q]) [q ! qq] + [qq ! q] > [q ! q] entanglement-assisted communication only In fact, these are all equalities! (Proof: reverse SDC.) = = |x i |y i E (I ­ X x Z y )|  i XZ Alice Bob |i|i |x i |y i |x i |y i

application to unitary gates U is a bipartite unitary gate (e.g. CNOT) Known: U > C[c ! c] implies U > C[q ! qq] Corollary: If entanglement is free then C ! E (U) = C à E (U y ). Time reversal means: U y > C [q à qq] = C [qq à q] - C [qq]

The quest for asymmetric unitary gate capacities Problem: If U is nonlocal, it has nonzero quantum capacities in both directions. Are they equal? Yes, if U is 2 £ 2. No, in general, but for a dramatic separation we will need a gate that violates time-reversal symmetry. U m |x i A |0 i B = |x i A |x i B for 0 6 x < 2 m U m |x i A |y i B = |x i A |y-1 i B for 0 < y 6 x < 2 m U m |x i A |y i B = |x i A |y i B for 0 6 x < y < 2 m the construction: (U m acts on 2 m £ 2 m dimensions)

et voilà l’asymétrie! U m |x i A |0 i B = |x i A |x i B for 0 6 x < 2 m U m |x i A |y i B = |x i A |y-1 i B for 0 < y 6 x < 2 m U m |x i A |y i B = |x i A |y i B for 0 6 x < y < 2 m U m > m[q ! qq] Meaning: U m ¼ m [q ! qq] and U m y ¼ m [q à qq] (almost worthless w/o ent. assistance!) Upper bound by simulation: m[q ! qq] + O((log m)(log m/  )) ([q ! q] + [q à q]) & U m Similarly, U m y > m[q à qq] and m[q à qq] + O((log m)(log m/  )) ([q ! q] + [q à q]) & U m y

disentanglement clean resource inequalities: means that  ­ n can be asymptotically converted to  ­ n while discarding only o(n) entanglement. (equivalently: while generating a sublinear amount of local entropy.) Example: [q ! q] > [qq] and [q ! q] > -[qq] clean Example: U m > m[qq], but can only destroy O(log 2 m) [qq] U m y > -m[qq], but can only create O(log 2 m) [qq] clean

You can’t just throw it away Q: Why not? A: Given unlimited EPR pairs, try creating the state Hayden & Winter [quant-ph/ ] proved that this requires ¼ n bits of communication.

more relevant examples Entanglement dilution: |  i AB is partially entangled. E = S(  A ). |  i ­ nE+o(n) ! |  i ­ n OR a size O(n ½ /  ) embezzling state [q-ph/ , Hayden-van Dam] Even |  i ­1 ! |  i ­ n requires  (n ½ ) cbits (in either direction). Quantum Reverse Shannon Theorem for general inputs Input  ­ n requires I(A;B)  [c ! c] + H( N (  )) [qq]. Superpositions of different  ­ n mean consuming superpositions of different amounts of entanglement: we need either extra cbits, embezzling, or another source of entanglement spread. [Bennett, Devetak, Harrow, Shor, Winter]

summary new ideas coherent erasure clean protocols entanglement spread new results asymmetric unitary gate capacities QRST and other converses new directions formalizing entanglement spread clean protocols involving noisy resources (cbits?) READ ALL ABOUT IT! quant-ph/