Amplitude-preserved wave-equation migration Paul Sava & Biondo Biondi SEP108 (pages 1-27)

Slides:



Advertisements
Similar presentations
Multiple attenuation in the image space Paul Sava & Antoine Guitton Stanford University SEP.
Advertisements

Reflection Seismic Processing
Multiple Removal with Local Plane Waves
Overview of SEP research Paul Sava. The problem Modeling operator Seismic image Seismic data.
Sensitivity kernels for finite-frequency signals: Applications in migration velocity updating and tomography Xiao-Bi Xie University of California at Santa.
Angle-domain parameters computed via weighted slant-stack Claudio GuerraSEP-131.
Riemannian Wavefield Migration: Wave-equation migration from Topography Jeff Shragge, Guojian Shan, Biondo Biondi Stanford.
Reverse-Time Migration
Wave-equation migration velocity analysis beyond the Born approximation Paul Sava* Stanford University Sergey Fomel UT Austin (UC.
Paul Sava* Stanford University Sergey Fomel UT Austin (UC Berkeley) Angle-domain common-image gathers.
Wave-equation MVA by inversion of differential image perturbations Paul Sava & Biondo Biondi Stanford University SEP.
Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University Sergey Fomel UT Austin.
Prestack Stolt residual migration Paul Sava* Stanford University Biondo Biondi Stanford University.
Loading of the data/conversion Demultiplexing Editing Geometry Amplitude correction Frequency filter Deconvolution Velocity analysis NMO/DMO-Correction.
Arbitrary Parameter Extraction, Stationary Phase Migration, and Tomographic Velocity Analysis Jing Chen University of Utah.
Analytical image perturbations for wave-equation migration velocity analysis Paul Sava & Biondo Biondi Stanford University.
Wave-equation common-angle gathers for converted waves Paul Sava & Sergey Fomel Bureau of Economic Geology University of Texas.
Amplitude-preserving wave-equation migration Paul Sava* Stanford University Biondo Biondi Stanford University.
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Applications of Time-Domain Multiscale Waveform Tomography to Marine and Land Data C. Boonyasiriwat 1, J. Sheng 3, P. Valasek 2, P. Routh 2, B. Macy 2,
Time-shift imaging condition Paul Sava & Sergey Fomel Bureau of Economic Geology University of Texas at Austin.
Imaging of diffraction objects using post-stack reverse-time migration
Earth Study 360 Technology overview
Wave-equation imaging Paul Sava Stanford University.
Wave-equation migration velocity analysis Paul Sava* Stanford University Biondo Biondi Stanford University.
Raanan Dafni,  Dual BSc in Geophysics and Chemistry (Tel-Aviv University).  PhD in Geophysics (Tel-Aviv University).  Paradigm Geophysics R&D ( ).
Automatic Wave Equation Migration Velocity Analysis Peng Shen, William. W. Symes HGRG, Total E&P CAAM, Rice University This work supervised by Dr. Henri.
Topographic Phase Shift with Applications to Migration and Multiple Prediction Ruiqing He University of Utah Feb
Angle-domain Wave-equation Reflection Traveltime Inversion
CS654: Digital Image Analysis Lecture 12: Separable Transforms.
Uncertainty Maps for Seismic Images through Geostatistical Model Randomization Lewis Li, Paul Sava, & Jef Caers 27 th SCRF Affiliates’ Meeting May 8-9.
1 Riemannian Wavefield Migration: Imaging non-conventional wavepaths and geometries Jeff Shragge Geophysics Department University.
© 2013, PARADIGM. ALL RIGHTS RESERVED. Long Offset Moveout Approximation in Layered Elastic Orthorhombic Media Zvi Koren and Igor Ravve.
Acoustic diffraction by an Oscillating strip. This problem is basically solved by a technique called Wiener Hopf technique.
ABSTRACT The design of a complete system level modeling and simulation tool for optical micro-systems is the focus of our research . We use a rigorous.
Wave-equation migration Wave-equation migration of reflection seismic data to produce images of the subsurface entails four basic operations: Summation.
SAMPLE IMAGE December 10th 2007 Software Product Management Massy 1 TIKIM “Kirchhoff pre-stack time migration” Overview (Jean-Claude LANCELOT) Meeting.
Wave-equation migration velocity analysis Biondo Biondi Stanford Exploration Project Stanford University Paul Sava.
Signal Analysis and Imaging Group Department of Physics University of Alberta Regularized Migration/Inversion Henning Kuehl (Shell Canada) Mauricio Sacchi.
AUTOMATON A Fuzzy Logic Automatic Picker Paul Gettings 1 UTAM 2003 Annual Meeting 1 Thermal Geophysics Research Group, University of Utah.
Least squares migration of elastic data Aaron Stanton and Mauricio Sacchi PIMS 2015.
Wave-Equation Waveform Inversion for Crosswell Data M. Zhou and Yue Wang Geology and Geophysics Department University of Utah.
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Shot-profile migration of GPR data Jeff Shragge, James Irving, and Brad Artman Geophysics Department Stanford University.
Migrating elastic data
Raanan Dafni,  PhD in Geophysics (Tel-Aviv University)  Paradigm R&D ( )  Post-Doc (Rice University) Current Interest: “Wave-equation based.
PROCESSING FOR SUBSALT IMAGING: A NEW AND FIRST TWO WAY MIGRATION METHOD THAT AVOIDS ALL HIGH FREQUENCY ASYMPTOTIC ASSUMPTIONS AND IS EQUALLY EFFECTIVE.
Lee M. Liberty Research Professor Boise State University.
Including headwaves in imaging and internal multiple attenuation theory Bogdan G. Nita Research Assistant Professor, Dept. of Physics University of Houston.
Velocity Analysis Using Surface-Seismic Primaries-Only Data Obtained Without Removing Multiples
4. Spectral Decomposition
HOCIGs and VOCIGs via Two-way Reverse Time Migration
Angle-Domain RTM: a Dip-Angle Construction
SEISMIC DATA GATHERING.
Modeling of free-surface multiples - 2
Paul Sava: WE seismic imaging
Accuracy of the internal multiple prediction when the angle constraints method is applied to the ISS internal multiple attenuation algorithm. Hichem Ayadi.
Modeling of free-surface multiples
Wave-Equation Migration Research at Los Alamos National Laboratory
Multiple attenuation in the image space
The FOCI method versus other wavefield extrapolation methods
Initial analysis and comparison of the wave equation and asymptotic prediction of a receiver experiment at depth for one-way propagating waves Chao Ma*,
A first step towards the P wave only modeling plan
Least-squares Joint Imaging of Primaries and Multiples
With Correct Velocity, Gather is Flat
EXPLORATION GEOPHYSICS
Mapping 2D multiples to image space
Prestack depth migration in angle-domain using beamlet decomposition:
Bogdan G. Nita *University of Houston M-OSRP Annual Meeting
Presentation transcript:

Amplitude-preserved wave-equation migration Paul Sava & Biondo Biondi SEP108 (pages 1-27)

Wave-equation imaging Why? –Complex wavefields –Sharp velocity variation sub-salt What? –Reflectivity function of incidence angle Imaging Migration Velocity Analysis (MVA) Amplitude vs. Angle Analysis (AVA)

Angle-Domain Common Image Gathers Applications –imaging –S/G migration (Prucha et at., 1999) –shot-profile migration (Rickett, 2001) –seismic inversion (Prucha et. al., 2001) –MVA –traveltime tomography (Clapp, 2000) –wave-equation MVA (Sava & Biondi, 2000) –C-waves –polarity reversal (Rosales, 2001) –AVA –wave-equation AVA (Gratwick, 2001)

Angle-gathers vs. offset-gathers Offset gather Angle gather

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

Reflection scheme: global view SourceReceiver V(x,y,z)  

Reflection scheme: local view   2h v 

ADCIG methods Reflection angleOffset ray-parameter k-domain (RTT) x-domain (slant-stack)

ADCIG: example

ADCIG methods: comparison Reflection angleOffset ray-parameter indirectly –function of dip directlyReflection angle less sensitivesensitiveInaccurate velocity boundaries data space –mixed with migration image space –separated from migration Computation domain

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

Spatial bandwidth khkh kzkz  max  max kzkz   max  max

Synthetic: ideal gather frequency domainspace domainamplitude

Temporal bandwidth imageangle gather dataoffset gather wide frequency band narrow frequency band  kzkz khkh kzkz khkh  khkh kzkz

Temporal bandwidth frequency domainspace domainamplitude

RTT implementation Two possibilities: –push: loop over input –pull: loop over output khkh kzkz kzkz  angle gather offset gather

push RTT offset-gatherangle-gather k-domain x-domain

pull RTT offset-gatherangle-gather k-domain x-domain

RTT amplitudes

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting functions COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

Amplitude-preserving migration Definition: the process of recovering the amplitude of the reflectivity vector given –perfect data –infinite bandwidth –infinite aperture

Modeling operator L: modeling operator A: Amplitude operator G: Reflection operator i 0 : seismic image r: reflectivity d: seismic data

Amplitude operator Clayton & Stolt (1981) L: modeling operator A: amplitude operator G: Reflection operator i 0 : seismic image r: reflectivity d: seismic data

Reflection operator L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data Clayton & Stolt (1981) Stolt & Benson (1986)

Amplitude-preserving operator L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data

Weighting operator modelingmigration

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting functions COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

Amplitude correction: the problem frequency domainspace domainamplitude

Jacobian: general expression image space data space

Jacobian: 2-D, image space  2h v 

Jacobian: general expression image space data space

Jacobian: 2-D, data space  2h v 

Jacobian: 2-D, flat reflectors (Wapenaar et al., 1999)

Amplitude correction: the problem frequency domainspace domainamplitude

AVA: correct amplitudes frequency domainspace domainamplitude

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

COMAZ: stationary-phase view from above 2-DCOMAZ

Amplitude component Phase-shift component COMAZ: stationary-phase correction

COMAZ: no amplitude corrections

COMAZ: all amplitude corrections

Agenda ADCIG kinematics image space data space Amplitude-preserved migration general formulation weighting function COMAZ ADCIG amplitudes spatial bandwidth temporal bandwidth RTT Applications true-amplitude migration inversion WEMVA

True-amplitude migration L: modeling operator A: amplitude operator G: reflection operator i 0 : seismic image r: reflectivity d: seismic data

True-amplitude migration: COMAZ OPERATORS L: modeling W: Jacobian A: amplitude A stat : stationary-phase G: reflection

True-amplitude migration: real data

Inversion: pseudo-unitary operators InversionMigration

Inversion: preconditioned regularization

Wave-equation MVA L: Wave-equation MVA m: slowness perturbation d: image perturbation References: SEP100, SEP103, SEP105

WEMVA: model

WEMVA: correct amplitudes

WEMVA: incorrect amplitudes

Summary The goal –Reflectivity function of reflection angle The means –correct ADCIG transformations –kinematics –amplitudes –correct migration amplitude

Applications true-amplitude migration seismic inversion AVA wave-equation MVA