Comp 790-087 Administrative Details Course Overview Coalescent Theory? 7/15/20151Comp 790– Introduction & Coalescence Genetics, Evolution, and the Coalescent.

Slides:



Advertisements
Similar presentations
Population Genetics 1 Chapter 23 in Purves 7 th edition, or more detail in Chapter 15 of Genetics by Hartl & Jones (in library) Evolution is a change in.
Advertisements

1. 1. Output depends uniquely on inputs:  Contains only logic gates, AND, OR,...  No feedback interconnects 2. Output depends on inputs and memory:
TREx ESC Coordinator Training April Agenda Version 3.9 Enhancements – Transcript Request Interface – STAAR EOC Assessment Support New TREx Data.
Sampling distributions of alleles under models of neutral evolution.
CSS 650 Advanced Plant Breeding Module 2: Inbreeding Small Populations –Random drift –Changes in variance, genotypes Mating Systems –Inbreeding coefficient.
Tuesday, May 14 Genetic Algorithms Handouts: Lecture Notes Question: when should there be an additional review session?
Parallel Lines and Planes
N-gene Coalescent Problems Probability of the 1 st success after waiting t, given a time-constant, a ~ p, of success 5/20/2015Comp 790– Continuous-Time.
EXAMPLE 1 Identify relationships in space
EXAMPLE 1 Identify relationships in space
21-May-15 Genetic Algorithms. 2 Evolution Here’s a very oversimplified description of how evolution works in biology Organisms (animals or plants) produce.
Introduction to the Cell Cycle and Inheritance
Evolutionary Computational Intelligence
2: Population genetics break.
Population Genetics What is population genetics?
Intro to AI Genetic Algorithm Ruth Bergman Fall 2002.
Binomial & Geometric Random Variables
Intro to AI Genetic Algorithm Ruth Bergman Fall 2004.
Evolutionary Change in Populations: Population Genetics, Selection & Drift.
Chapter 23 Population Genetics © John Wiley & Sons, Inc.
KEY CONCEPT A population shares a common gene pool.
 The factorial function (n!)  Permutations  Combinations.
Genetic Algorithm.
KEY CONCEPT A population shares a common gene pool.
Section 3: Beyond Darwinian Theory
Chapter 13 Meiosis and Sexual Life Cycles. Asexual reproduction: Single individual is sole parent, passes copies of all its genes to its offspring (exact.
MATH 3581 — College Geometry — Spring 2010 — Solutions to Homework Assignment # 3 B E A C F D.
Lecture 3: population genetics I: mutation and recombination
Course outline HWE: What happens when Hardy- Weinberg assumptions are met Inheritance: Multiple alleles in a population; Transmission of alleles in a family.
An Introduction to Genetic Algorithms Lecture 2 November, 2010 Ivan Garibay
Fuzzy Genetic Algorithm
Finite population. - N - number of individuals - N A and N a – numbers of alleles A and a in population Two different parameters: one locus and two allels.
1.Behavior geneticists study the genetic basis of behavior and personality differences among people. 2.The more closely people are biologically related,
Models and their benefits. Models + Data 1. probability of data (statistics...) 2. probability of individual histories 3. hypothesis testing 4. parameter.
Demonstrate understanding of biological ideas relating to genetic variation Science 1.9 (AS90948)
EE749 I ntroduction to Artificial I ntelligence Genetic Algorithms The Simple GA.
David Corne, and Nick Taylor, Heriot-Watt University - These slides and related resources:
AES Encryption FIPS 197, November 26, Bit Block Encryption Key Lengths 128, 192, 256 Number of Rounds Key Length Rounds Block.
By Mireya Diaz Department of Epidemiology and Biostatistics for EECS 458.
David Corne, and Nick Taylor, Heriot-Watt University - These slides and related resources:
Lesson 10-8 Pages Translations. Example 1: Translate ∆ABC 5 units left and 1 unit up. B CA A’B’ C’
An Introduction to Genetic Algorithms Lecture 2 November, 2010 Ivan Garibay
Minimum Spanning Trees Text Read Weiss, §9.5 Prim’s Algorithm Weiss §9.5.1 Similar to Dijkstra’s Algorithm Kruskal’s Algorithm Weiss §9.5.2 Focuses on.
Fixed Parameters: Population Structure, Mutation, Selection, Recombination,... Reproductive Structure Genealogies of non-sequenced data Genealogies of.
11.1 Genetic Variation Within Population KEY CONCEPT A population shares a common gene pool.
Michael Bordonaro, Christopher Chiaro, and Tobias May Experimental Design to Evaluate Directed Adaptive Mutation in Mammalian Cells.
LECTURE 9. Genetic drift In population genetics, genetic drift (or more precisely allelic drift) is the evolutionary process of change in the allele frequencies.
The graph is neither Eulerian or Semi – Eulerian as it has 4 ODD vertices.
Genetic Algorithms.
Warm-Up 3) 1) 4) Name the dimensions 2).
Jan 2007.
Combinations COURSE 3 LESSON 11-3
It’s a powerpoint! SWEET!
Make an Organized List and Simulate a Problem
Basics of Genetic Algorithms (MidTerm – only in RED material)
Vectors (1).
ORC Is Necessary at the Interphase-to-Mitosis Transition to Recruit cdc2 Kinase and Disassemble RPA Foci  Olivier Cuvier, Malik Lutzmann, Marcel Méchali 
Natural Selection Who or what selects if an organism survives?
Data Warehousing Mining & BI
The coalescent with recombination (Chapter 5, Part 1)
Basics of Genetic Algorithms
ISOMETRIC PROJECTION BISECT LINE TO GET RED DOT. Down 80 In 70
Latin Square Designs.
BIOLOGY NOTES EVOLUTION PART 2 PAGES
Homozygous & Heterozygous Notes
Chapter Outline Goodness of Fit test Test of Independence.
Science Review Jeopardy Darwin and his theory
Find the value of g. Find the value of h. 105° h g 75°
6.3 Find Probabilities Using Combinations
Presentation transcript:

Comp Administrative Details Course Overview Coalescent Theory? 7/15/20151Comp 790– Introduction & Coalescence Genetics, Evolution, and the Coalescent Theory

Course Overview Synopsis – Graduate-level project course – Guided reading, discussions, and project with write-up Website – To appear at: Course Grading – Class Participation10% – 2 In-class Presentations40% – Final Project, Presentation, & Write-up50% 7/15/20152Comp 790– Introduction & Coalescence

Syllabus ⅓ Guided reading/discussion of text ⅓ Student presentations of recent papers ⅓ Project Proposals 7/15/2015Comp 790– Introduction & Coalescence3

Coalescent Theory Ancestral properties can be inferred from extant populations Alternatives to Correctness – Most-Likely – Most Parsimonious – Other optimality criteria Background – Biology (genetics) – Statistics – Computational Modeling 7/15/2015Comp 790– Introduction & Coalescence4

Non-Classical Genetics Coalescence differs from classical genetics – Analysis rather than synthesis – Depends on models, which attempt to explain observations – Less emphasis on Darwin’s natural selection Considers population dynamics – Isolation – Bottlenecks 7/15/2015Comp 790– Introduction & Coalescence5

Historical Human Migrations 7/15/2015Comp 790– Introduction & Coalescence6

Population Dynamics It is helpful to view evolutionary trees in the contexts of geography and population structure These factors affect the prevalence and distribution of genes Genetic diversity largely depends on population isolation and population bottlenecks, as well as – Constant population size (resource limited) – Sudden increases in population (explosions) – Patterns of growth (exponential, uniform, etc.) 7/15/2015Comp 665 – Introduction & Signals7

It’s About Genes Genetics is most clearly understood by considering its subject to be genes rather than organisms Organisms are merely vessels for assuring the survival of genes Successful genes live on long after their host organism An objective of a gene is to replicate itself 7/15/2015Comp 790– Introduction & Coalescence8 “[Genes] that survived were the ones that built survival machines for themselves to live in. But making a living got steadily harder as new rivals arose with better and more effective survivial machines. Survival machines got bigger and more eloborate, and the process was cumulative and progressive…” -- Dawkins, The Selfish Gene

Why Computer Science Classically, genetics, both generative (classical) and coalescent (population) has focused on mathematical/statistical models As model complexity increases, it becomes harder to find closed-form solutions Relies more and more on computational modeling to ascertain structure Also, complicated models often lead to common models… today’s subject 7/15/2015Comp 790– Introduction & Coalescence9

Wright-Fisher Model One of the first, and simplest models of population genealogies was introduced by Wright (1931) and Fisher (1930). Model emphasizes transmission of genes from one generation to the next For simplicity we’ll first focus on a fixed population size, each with a distinct gene variant 7/15/2015Comp 790– Introduction & Coalescence10

Simple Haploid Model Rules – Antecedent genes are chosen randomly, with replacement, from their parental generation – No selection – Fixed population size 7/15/2015Comp 790– Introduction & Coalescence11 G0: ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'] G1: ['J', 'A', 'H', 'B', 'I', 'E', 'D', 'G', 'A', 'B'] G2: ['A', 'J', 'E', 'G', 'D', 'E', 'B', 'I', 'A', 'A'] G3: ['A', 'A', 'E', 'J', 'I', 'A', 'I', 'A', 'J', 'B'] G4: ['E', 'A', 'B', 'B', 'A', 'E', 'A', 'A', 'A', 'A'] G5: ['A', 'A', 'B', 'A', 'A', 'E', 'A', 'A', 'A', 'B'] G6: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A'] G7: ['B', 'A', 'A', 'B', 'A', 'A', 'A', 'A', 'A', 'A'] What will this population eventually look like?

Assumptions of Wright/Fisher Discrete and non-overlapping generations Haploid individuals Populations size is constant All individuals are equally fit No population of social structure Genes segregate independently 7/15/2015Comp 790– Introduction & Coalescence12

Some Graphical Abstractions Replace letters with colors Draw lineages Sort topologically 7/15/201513Comp 790– Introduction & Coalescence

Repeats 7/15/2015Comp 790– Introduction & Coalescence14 Every population results in just one gene

Onset of Uniformity trials Mode = 11 (616) Mean = /15/2015Comp 790– Introduction & Coalescence15

Diploid Model Our model is obviously too simple, let’s add more realism Organisms are diploid (have 2, perhaps different, copies of each gene) Sexual reproduction Half female, Half Male 7/15/2015Comp 790– Introduction & Coalescence16 ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ'] ['CF', 'AG', 'BI', 'CH', 'CH', 'EG', 'EG', 'EH', 'EI', 'DG'] ['CE', 'IE', 'CG', 'HE', 'HE', 'FG', 'IG', 'BE', 'BG', 'HE'] ['CB', 'EI', 'HE', 'HI', 'HE', 'CG', 'EF', 'EI', 'HF', 'GI'] ['EE', 'HF', 'BC', 'IG', 'BH', 'HI', 'BI', 'EF', 'HG', 'HC'] ['CH', 'BH', 'BH', 'EI', 'BH', 'BE', 'BI', 'HC', 'EH', 'IH'] ['BE', 'BE', 'IB', 'BE', 'BH', 'BH', 'BH', 'HH', 'CB', 'EH'] ['BH', 'EC', 'BB', 'BB', 'IC', 'BH', 'EH', 'EH', 'BE', 'EB'] ['CE', 'BE', 'BE', 'BE', 'CH', 'BE', 'CB', 'HE', 'IB', 'CB'] ['EH', 'BB', 'BB', 'BH', 'EC', 'EE', 'EC', 'CE', 'CI', 'CE'] ['CI', 'BE', 'EC', 'BE', 'BC', 'BC', 'BE', 'BE', 'BE', 'BC'] ['EB', 'EB', 'BB', 'CB', 'EB', 'CC', 'IB', 'BC', 'IE', 'CB'] ['BB', 'EC', 'BE', 'BC', 'CC', 'CC', 'EI', 'BI', 'BC', 'BC'] ['EB', 'CB', 'CC', 'BC', 'BB', 'CC', 'BI', 'CC', 'BC', 'CC'] ['BC', 'BC', 'CC', 'BC', 'BC', 'EC', 'BB', 'BC', 'BC', 'BB'] ['BB', 'BC', 'CB', 'CC', 'CB', 'CC', 'CB', 'CB', 'CE', 'CB'] ['CC', 'CB', 'CC', 'CB', 'BB', 'CC', 'CB', 'CC', 'CC', 'BC'] ['CC', 'CC', 'CC', 'BB', 'CC', 'BC', 'CC', 'CC', 'CC', 'CB'] ['CC', 'BC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CB', 'CC', 'CC'] ['CC', 'BC', 'BC', 'CC', 'CC', 'CC', 'CC', 'CC', 'BC', 'CC'] ['CC', 'CC', 'CC', 'BC', 'CC', 'CC', 'CC', 'CC', 'BC', 'CB'] ['CC', 'BC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC'] ['CC', 'CC', 'CC', 'CC', 'CC', 'BC', 'CC', 'CC', 'CC', 'CC'] ['CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC', 'CC'] MalesFemales

Same Result 7/15/2015Comp 790– Introduction & Coalescence17 ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ'] ['AG', 'BF', 'AI', 'EJ', 'DH', 'AH', 'CH', 'AI', 'DI', 'AH'] ['BI', 'AI', 'FA', 'AC', 'GH', 'AH', 'BI', 'DH', 'FI', 'AH'] ['HH', 'AI', 'BH', 'II', 'AI', 'AI', 'GI', 'AD', 'IA', 'AA'] ['HG', 'IG', 'ID', 'IA', 'ID', 'HG', 'HI', 'AA', 'AI', 'IA'] ['IA', 'DG', 'DH', 'HA', 'GA', 'DI', 'GH', 'GG', 'II', 'IH'] ['HI', 'GI', 'GH', 'DH', 'GG', 'HH', 'II', 'HI', 'ID', 'GH'] ['HH', 'GI', 'HI', 'HI', 'HH', 'IH', 'HH', 'HI', 'GG', 'HH'] ['GH', 'HH', 'HH', 'HH', 'IH', 'II', 'HH', 'HI', 'HG', 'HH'] ['HI', 'HG', 'HH', 'HH', 'IH', 'HH', 'GH', 'HH', 'HI', 'HH'] ['HH', 'HH', 'HH', 'HI', 'HG', 'HH', 'HH', 'HH', 'HH', 'IH'] ['HH', 'HH', 'HH', 'HH', 'HH', 'HH', 'IH', 'GH', 'HH', 'GH'] ['HI', 'HH', 'HG', 'HG', 'HH', 'HI', 'HG', 'HG', 'HH', 'HH'] ['GG', 'GH', 'HI', 'HH', 'IG', 'GH', 'IG', 'HG', 'HH', 'HH'] ['IH', 'HH', 'HG', 'HI', 'GH', 'HH', 'GI', 'IG', 'HH', 'GH'] ['IH', 'HG', 'HG', 'IH', 'HH', 'HG', 'II', 'HH', 'HG', 'IH'] ['II', 'HI', 'HI', 'HH', 'HH', 'HH', 'IH', 'HH', 'GI', 'HH'] ['IH', 'II', 'HH', 'HH', 'II', 'HH', 'HH', 'IH', 'HH', 'HH'] ['HH', 'HH', 'HH', 'II', 'IH', 'IH', 'IH', 'HH', 'IH', 'IH'] ['IH', 'HH', 'IH', 'II', 'IH', 'HH', 'HH', 'II', 'IH', 'IH'] ['HI', 'II', 'IH', 'IH', 'IH', 'HH', 'HI', 'IH', 'HI', 'HH'] ['IH', 'HH', 'HI', 'HI', 'HH', 'HI', 'HH', 'II', 'IH', 'HH'] ['II', 'HH', 'HH', 'HH', 'HH', 'HH', 'HI', 'HH', 'HH', 'II'] ['IH', 'HI', 'HI', 'HH', 'HI', 'HH', 'HH', 'HH', 'IH', 'HI'] ['IH', 'HH', 'HI', 'IH', 'HH', 'HH', 'HI', 'HI', 'HI', 'HH'] ['HI', 'HH', 'HH', 'HH', 'HH', 'HH', 'HI', 'HI', 'HH', 'HH'] ['HH', 'HH', 'IH', 'HH', 'HI', 'HH', 'HH', 'HH', 'HH', 'HH'] ['HH', 'HH', 'HH', 'IH', 'HH', 'HH', 'HH', 'HH', 'HH', 'HH'] ['HH', 'HH', 'HH', 'HH', 'HH', 'HH', 'HH', 'HH', 'HH', 'HH'] MalesFemales ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ'] ['EF', 'EI', 'DI', 'BF', 'EJ', 'BI', 'AI', 'CI', 'EJ', 'EI'] ['FB', 'EE', 'EI', 'JB', 'FE', 'BJ', 'JE', 'EI', 'EE', 'DI'] ['FJ', 'IE', 'FE', 'JE', 'EJ', 'FI', 'FE', 'BJ', 'EB', 'FJ'] ['FF', 'II', 'EB', 'FI', 'EI', 'EJ', 'EB', 'IB', 'EI', 'EF'] ['FE', 'IE', 'BE', 'BB', 'BE', 'EB', 'EB', 'IE', 'BI', 'FJ'] ['BB', 'FE', 'FE', 'EE', 'EE', 'BJ', 'II', 'EE', 'BE', 'FE'] ['BB', 'EB', 'EB', 'EE', 'EI', 'EE', 'FI', 'EE', 'EE', 'EE'] ['EF', 'BE', 'BE', 'EE', 'BE', 'IE', 'BI', 'EE', 'EE', 'EE'] ['EE', 'BE', 'FE', 'EB', 'EE', 'BE', 'BE', 'BE', 'FE', 'EE'] ['EF', 'EE', 'EE', 'EE', 'EE', 'EE', 'FE', 'EB', 'BE', 'EE'] ['EE', 'FB', 'EE', 'EE', 'EE', 'EB', 'EE', 'EE', 'EE', 'EE'] ['EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'BE', 'EE', 'EE'] ['EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'EE', 'EE'] ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ'] ['AF', 'AJ', 'AF', 'CG', 'BG', 'BH', 'AH', 'EG', 'DG', 'DJ'] ['AA', 'AH', 'CA', 'AJ', 'BJ', 'GB', 'AB', 'GH', 'BB', 'AA'] ['JH', 'AB', 'AA', 'AG', 'AB', 'JB', 'AH', 'AA', 'AA', 'AG'] ['GA', 'AA', 'AG', 'BH', 'AB', 'BA', 'GA', 'AA', 'AA', 'AA'] ['AA', 'AA', 'AA', 'AA', 'AG', 'AA', 'AA', 'AA', 'AB', 'AA'] ['AA', 'AA', 'AB', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA'] ['BA', 'AA', 'AA', 'AA', 'AA', 'BA', 'AA', 'AA', 'AA', 'AA'] ['AB', 'AA', 'AA', 'AB', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA'] ['AA', 'AA', 'BA', 'AA', 'BA', 'AA', 'AA', 'AA', 'AA', 'AA'] ['AA', 'AA', 'AA', 'BA', 'BA', 'AA', 'AA', 'AA', 'AA', 'AA'] ['AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'BA', 'AA', 'BA', 'AA'] ['AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AB', 'AB', 'AA'] ['AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA', 'AA'] MalesFemales MalesFemales

Similar Distributions trials Mode = 24 (291) Mean = 35.5 These statistics are almost exactly 2x the haploid (Mode = 11, Mean = 17.5) 7/15/2015Comp 790– Introduction & Coalescence18

Punnett Squares AA x BBAA BAB B 7/15/2015Comp 790– Introduction & Coalescence19 AB x ABAB AAAAB B BB What if we introduce inbreeding, by choosing mates from common litters, in successive generations AB x BBAB BABBB BABBB

Different Problem? 7/15/2015Comp 790– Introduction & Coalescence20 ('A', 'A') ('B', 'B') [('A', 'B'), ('A', 'B'), ('A', 'B'), ('A', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'B') ('A', 'A') [('A', 'A'), ('A', 'A'), ('A', 'B'), ('A', 'B')] ('A', 'A') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'A'), ('A', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'B') ('B', 'B') [('A', 'B'), ('A', 'B'), ('B', 'B'), ('B', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'B') ('B', 'B') [('A', 'B'), ('A', 'B'), ('B', 'B'), ('B', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'A') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'A'), ('A', 'B')] ('A', 'B') ('A', 'A') [('A', 'A'), ('A', 'A'), ('A', 'B'), ('A', 'B')] ('A', 'A') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'A'), ('A', 'B')] ('A', 'A') ('A', 'A') [('A', 'A'), ('A', 'A'), ('A', 'A'), ('A', 'A')] ('A', 'A') ('B', 'B') [('A', 'B'), ('A', 'B'), ('A', 'B'), ('A', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'B') ('A', 'A') [('A', 'A'), ('A', 'A'), ('A', 'B'), ('A', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'B') ('B', 'B') [('A', 'B'), ('A', 'B'), ('B', 'B'), ('B', 'B')] ('B', 'B') ('B', 'B') [('B', 'B'), ('B', 'B'), ('B', 'B'), ('B', 'B')] ('A', 'A') ('B', 'B') [('A', 'B'), ('A', 'B'), ('A', 'B'), ('A', 'B')] ('A', 'B') ('A', 'B') [('A', 'A'), ('A', 'B'), ('A', 'B'), ('B', 'B')] ('A', 'A') ('A', 'A') [('A', 'A'), ('A', 'A'), ('A', 'A'), ('A', 'A')] Parents Offspring

Distributions 7/15/2015Comp 790– Introduction & Coalescence21

Next time Commonly occurring distributions – Geometric – Exponential 7/15/2015Comp 790– Introduction & Coalescence22