Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec 17-18 th 2007.

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

January 28th, 2010Clermont Ferrand, Paul Scherrer Institut DRS Chip Developments Stefan Ritt.
Analog Peak Detector and Derandomizer G. De Geronimo, A. Kandasamy, P. O’Connor Brookhaven National Laboratory IEEE Nuclear Sciences Symposium, San Diego.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
The NO A APD Readout Chip Tom Zimmerman Fermilab May 19, 2006.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Microchannel Plates signals, Picosecond timing, Design’s minimum performance.
4-channel ASIC Tests Michael Baumer, Jean-Francois Genat, Sam Meehan, Eric Oberla August 26 th 2009.
DEVELOPMENT OF A READOUT SYSTEM FOR LARGE SCALE TIME OF FLIGHT SYSTEMS WITH PICOSECOND RESOLUTION Considerations and designs for a system of tdc’s with.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Introduction to Analog-to-Digital Converters
POSTER TEMPLATES BY: Development of Front-End Electronics for Picosecond Resolution TOF Detectors Fukun Tang, Enrico Fermi.
A few numbers. kT/C noise: limits the dynamic range Sampling capacitor: 60 fF (seen by the switch, post-layout) kT/C = sqrt( * 300K * 60fF)
Phase Locked Loops Continued
Time to Digital Conversion Performance Metrics and Tests Jean-Francois Genat IN2P3/LPNHE Paris IEEE Nuclear Science Symposium and Medical Imaging Conference.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Fast Waveform Digitizing in Radiation Detection using Switched Capacitor Arrays Stefan Ritt Paul Scherrer Institute, Switzerland.
Mehdi Sadi, Italo Armenti Design of a Near Threshold Low Power DLL for Multiphase Clock Generation and Frequency Multiplication.
A 4-Channel Waveform Sampling ASIC in 130 nm CMOS E. Oberla, H. Grabas, J.F. Genat, H. Frisch Enrico Fermi Institute, University of Chicago K. Nishimura,
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Signal Processing for Fast Photo-detectors Jean-François Genat With the help of: Mircea Bogdan, Henry Frisch, Eric Oberla, Fukun Tang U Chicago.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
QIE10 Issues Tom Zimmerman Fermilab Oct. 28,
The Chicago Half of Champ
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Development of high speed waveform sampling ASICs Stefan Ritt - Paul Scherrer Institute, Switzerland NSNI – 2010, Mumbai, India.
Timing Performance of Micro-Channel Plates and other detectors with different Front-end Architectures Jean-François Genat CNRS/IN2P3 LPNHE Paris PH-ESE.
A 20 GS/s sampling ASIC in 130nm CMOS technology.
1 A High-Speed and Wide Detectable Frequency Range Phase Detector for DLLs Babazadeh, H.; Esmaili, A.; Hadidi, K.; NORCHIP, 2009 Digital Object Identifier:
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Front-end Electronics for Silicon Trackers readout Deep Sub-Micron Technology The case of Silicon strips at the ILC Jean-Francois Genat and S. Fougeron,
EUDET ANNUAL MEETING OCT 6th-8th 2008, NIKHEF A 130nm CMOS Digitizer Chip for Silicon Strips readout at the ILC on behalf of W. Da Silva 1, J. David 1,
Analog to Digital Converters
Front-End Electronics for G-APDs Stefan Ritt Paul Scherrer Institute, Switzerland.
Update on Physical Parameters that influence Timing Jean-Francois Genat LPNHE Paris LAPPD Electronics & Integration Review July 9th 2012, Chicago.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
Sampling chip psTDC_02 Jean-Francois Genat – Herve Grabas Mary Heinz – Eric Oberla 1/27/ psTDC_02 presentation.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Motivation for 65nm CMOS technology
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
CMOS Analog Design Using All-Region MOSFET Modeling
- Herve Grabas - Ecole Superieure d’Electicite 1 Internship presentation - University of Chicago – 3 sept
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
Digitization at Feed Through R&D (2) Digitizer Performance Evaluation Student: John Odeghe ; SC State, Fermi Lab Intern Supervisor: JinYuan Wu; Fermi Lab.
Time Pick-off Techniques Jean-Francois Genat CNRS/IN2P3/LPNHE Paris IEEE Nuclear Science Symposium and Medical Imaging Conference October 23d 2011, Valencia,
 13 Readout Electronics A First Look 28-Jan-2004.
Silicon Tracker Data Acquisition and Electronics for the Linear Collider Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3 On behalf.
A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC on behalf of J. David 2, M. Dhellot 2, D. Fougeron, 1 R. Hermel 1, J-F. Huppert.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
A General Purpose Charge Readout Chip for TPC Applications
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
INFN Pavia and University of Bergamo
Timing and fast analog memories in Saclay
R&D activity dedicated to the VFE of the Si-W Ecal
Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
TDC at OMEGA I will talk about SPACIROC asic
A First Look J. Pilcher 12-Mar-2004
Possible Upgrades ToF readout Trigger Forward tracking
Status of n-XYTER read-out chain at GSI
MCP Electronics Time resolution, costs
Jean-Francois Genat – Herve Grabas Mary Heinz – Eric Oberla
Presented by T. Suomijärvi
TOF read-out for high resolution timing
Ongoing R&D in Orsay/Saclay on ps time measurement: status of the USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton & J.Maalmi (LAL Orsay), E.Delagnes.
Front-end Digitization for fast Imagers.
Presentation transcript:

Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec th 2007

Outline Time picking strategies Timing using MCPs Fast Sampling chip Technologies Conclusions Jean-Francois Genat, EFI, Dec th 2007, Chicago

Time picking techniques Jean-Francois Genat, EFI, Dec th 2007, Chicago Discriminators can be: - Single Threshold - Derivative ’ s Zero-crossing - Multiple Thresholds - CFDs (many flavours) All make assumptions on the signal waveform depending upon detector + front end processing Fast sampling and digitization Extract most of the pulse information if sampling is fast enough to resolve the signal rise-time Digital processing allows any kind of time (and amplitude) extraction Time accuracy depends on the sampling rate and amplitude ranges

GHz sampling Fast sampling: High rate sampling and pulse reconstruction knowing the waveform allows to get accurately: - Amplitude - Time using for instance least squares algorithms (Cleland & Stern) On-chip digital oscilloscopes, integrated in multi-channel analog memory chips: Labrador (Hawaii), SAM (Saclay) Digital signal processing can also be integrated Jean-Francois Genat, EFI, Dec th 2007, Chicago

Outline Time picking strategies Timing using MCPs Fast Sampling chip Technologies Conclusions Jean-Francois Genat, EFI, Dec th 2007, Chicago

MCPs timing performance Jean-Francois Genat, EFI, Dec th 2007, Chicago

Fast signals ns Jean-Francois Genat, EFI, Dec th 2007, Chicago

Fast Sampling with Si detectors Input signal 30ns peaking time (detector + noise) S/N = 30 Noise spectrum Serial, 1/f Amplitude and time spreads sigma(a) =2%, sigma(t)= 1.2 ns Peaking time = 50ns Jean-Francois Genat, EFI, Dec th 2007, Chicago A few nanoseconds measured (M. Friedl, M. Pernicka, Vienna)

Fast sampling simulations Jean-Francois Genat, EFI, Dec th 2007, Chicago Peaking time = 200ps 256 samples S/N=50 Sigma(time) = 6ps Peaking time = 160ps 128 samples S/N=60 Sigma(time) = 8.3ps Residual (no noise) : 3ps Simulated waveforms: White noise added to randomly delayed pulses 2ns1ns No sensitivity to amplitude distribution Infinite dynamic range assumed

Outline Time picking strategies Timing using MCPs Fast Sampling chip Technologies Conclusions Jean-Francois Genat, EFI, Dec th 2007, Chicago

GHz sampling Output Counter and picosecond Vernier timer Read Cntrl Triggering discriminators Analog storage Inputs Figure 1 Fast sampler block diagram Write and Read control Wilkinson AD Time stamps 500 MHz Clock Jean-Francois Genat, EFI, Dec th 2007, Chicago

Blocks Jean-Francois Genat, EFI, Dec th 2007, Chicago Capacitor bank (SCA): - number of channels - depth - dynamic range - droop, crosstalk Timing generator - time step - clock frequency - use Vernier to increase sampling frequency Triggering Discriminators - threshold - speed - delay ADC (Wilkinson) - number of channels - number of bits - clock speed Control and processing Overall: - input to SCA bandwidth - temperature sensitivity - calibration - power

Timing generator Jean-Francois Genat, EFI, Dec th 2007, Chicago N taps main DLL Clock input t h = T clock /N, t v = T clock /M N and M relatively primes LSB = t h -t v M taps Vernier DLLs N x M delayed outputs thth tvtv Increasing delays Use as much as possible clock locked looped delays Routing of delays to SCA critical

Digital Delay Lines: DLL Clock feeds the digital delay line Phase arbiter locks delays on clock period Delay locked loop: Interpolate delays within a clock period N delay elements  Delays control Time arbiter Clock M. Bazes IBM, Proc. IEEE JSSC 1985 p 75 Jean-Francois Genat, EFI, Dec th 2007, Chicago

Phase lock Lag Lag Lead OK Clock DLL output Phase arbiter Delay control Jean-Francois Genat, EFI, Dec th 2007, Chicago

Delay elements Active RC element: R resistance of a switched on transistor C total capacitance at the connecting node Typically RC = using current IC technologies N delay elements   is technology dependent: the fastest, the best ! Within a chip  ~ 1 % a wafer  ~ 5-10% a lot  ~ 10-20% [Mantyniemi et al. IEEE JSSC 28-8 pp ] Jean-Francois Genat, EFI, Dec th 2007, Chicago

Time controlled delay CMOS Technology 90nm:  ~ ps 65nm in production today Propagation delay  ~ ps Delay controls thru gates voltages PMOS NMOS B=A 100ps TDC 0.6  m CMOS (1992) Spread=12 ps Jean-Francois Genat, EFI, Dec th 2007, Chicago PMOS NMOS Delay control thru Vdd Vdd

Switched Capacitors Array writeread reset Jean-Francois Genat, EFI, Dec th 2007, Chicago Flavours: - Sampling Cap switched in the loop of an opamp - Differential implementation

Discriminators Jean-Francois Genat, EFI, Dec th 2007, Chicago Do not need the ps accuracy (reference is the main clock) Stops the sampling after a (programmable) delay

ADC Jean-Francois Genat, EFI, Dec th 2007, Chicago Wilkinson preferred in terms of power and Silicon area since heavily parallel See Eric Delagnes slide: Fast Wilkinson: Clock interpolated using a DLL 100 ps counter 10 times faster Same 12 bit accuracy

ILC 130nm Silicon strips chip Waveforms CMOS 130nm Counter Single ramp 10 bits ADC Can be used for fast decision Ch # Analog samplers  i V i > th (includes auto-zero) Sparsifier Channel n+1 Channel n-1 Time tag Preamp + Shapers Strip reset Clock 3-96 MHz reset Jean-Francois Genat, EFI, Dec th 2007, Chicago ADC

Outline Time picking strategies Timing using MCPs Fast Sampling chip Technologies Conclusions Jean-Francois Genat, EFI, Dec th 2007, Chicago

Technologies Jean-Francois Genat, EFI, Dec th 2007, Chicago SiGe - Not many benefits compared to Deep Sub-Micron CMOS - In addition CMOS from BiCMOS not as fast as pure DSM CMOS 2006

CMOS Jean-Francois Genat, EFI, Dec th 2007, Chicago Present designs in CMOS: CERN HPTDC IBM.25  m 25ps timing generator development.13  m 6ps timing generator Hawaii BLAB 1 TSMC.25  m 6 GHz 10b sampling dev 2 TSMC.25  m 10 GHz Saclay SAM AMS.35  m 2 GHz 12b sampling 90nm CMOS available from MOSIS, Europractice Drawbacks - Reduced voltage supply - Leaks

Outline Time picking strategies Timing using MCPs Fast Sampling chip Technologies Conclusions Jean-Francois Genat, EFI, Dec th 2007, Chicago

Backup J-F Genat, RP220/420 Paris Workshop, Sept 12th 2007

Multi-threshold performance Multi-threshold: sampling times instead of amplitudes : - Number of thresholds Thresholds values equally spaced - Order of the fit: 2d order optimum Extrapolated time

MCP PMT single photon signals Actual MCPs signals K. Inami Univ. Nagoya Tr = 500ps tts= 30ps N photo-electrons improves as MCPs segmented anode signals simulation 20 photoelectrons tts = 860 fs H. Frisch, Univ. Chicago + Argonne Jean-Francois Genat, EFI, Dec th 2007, Chicago BUT