Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
M. Lujan Hadron Electric Polarizability with n-HYP Clover Fermions Michael Lujan Andrei Alexandru, Walter Freeman, and Frank Lee The George Washington.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
5/20/2015v. Kolck, Halo EFT1 Background by S. Hossenfelder Halo Effective Field Theory U. van Kolck University of Arizona Supported in part by US DOE.
16/3/2015 Baryon-Baryon Interactions From Lattice QCD Martin Savage University of Washington K  (Hyperons 2006, Mainz, Germany)
Scadron70 page 1 Pattern of Light Scalar Mesons a 0 (1450) and K 0 *(1430) on the Lattice Tetraquark Mesonium – Sigma (600) on the Lattice Pattern of Scalar.
Lattice QCD and Nuclear Physics Martin Savage University of Washington Lattice 2005, Dublin, July 2005.
Scadron70 page 1 Lattice Calculation: Caveats and Challenges What lattice can and cannot do What lattice can and cannot do Caveats of calculating meson.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
Excited Hadrons: Lattice results Christian B. Lang Inst. F. Physik – FB Theoretische Physik Universität Graz Oberwölz, September 2006 B ern G raz R egensburg.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
QCD thermodynamic on the lattice and the hadron resonance gas Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, Ocho.
How Does Short Distance Behavior Affect the Nucleus Don Geesaman 12 January 2007 DNP QCD Town Meeting.
QUARKS, GLUONS AND NUCLEAR FORCES Paulo Bedaque University of Maryland, College Park.
Opportunities for low energy nuclear physics with rare isotope beam 현창호 대구대학교 과학교육학부 2008 년 11 월 14 일 APCTP.
1 Multi-nucleon bound states in N f =2+1 lattice QCD T. Yamazaki 1), K.-I. Ishikawa 2), Y. Kuramashi 3,4), A. Ukawa 3) 1) Kobayashi-Maskawa Institute,
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
Quarks, Leptons and the Big Bang particle physics  Study of fundamental interactions of fundamental particles in Nature  Fundamental interactions.
Assumpta Parreño NPLQCD Collaboration HYP-XInternational conference of hypernuclear physics, JPARC, Ibaraki, JAPAN Sep. 14- Sep
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Hadron - Hadron Interactions 12 GeV  and Lattice QCD --- Martin Savage Color Transparancy --- Jean-Marc Laget Presentation…… November 5, 2004,
Baryon Resonances from Lattice QCD Robert Edwards Jefferson Lab N high Q 2, 2011 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
Second Berkeley School on Collective Dynamics, May 21-25, 2007 Tetsuo Hatsuda, Univ. Tokyo PHYSICS is FUN LATTICE is FUN [1] Lattice QCD basics [2] Nuclear.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Meson Assisted Baryon-Baryon Interaction Hartmut Machner Fakultät für Physik Universität Duisburg-Essen Why is this important? NN interactions  Nuclear.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Two particle states in a finite volume and the multi-channel S- matrix elements Chuan Liu in collaboration with S. He, X. Feng Institute of Theoretical.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
Nucleon Polarizabilities: Theory and Experiments
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Nucleon and Roper on the Lattice Y. Chen Institute of High Energy Physics, CAS, China Collaborating with S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F.
Probing TeV scale physics in precision UCN decays Rajan Gupta Theoretical Division Los Alamos National Lab Lattice 2013 Mainz, 30 July 2013 Superconducting.
Lawrence Livermore National Laboratory Lattice QCD and Nuclear physics From Pipe Dream to Reality June 22, 2009 Tom Luu Performance Measures x.x, x.x,
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
Collaborators: Bugra Borasoy – Bonn Univ. Thomas Schaefer – North Carolina State U. University of Kentucky CCS Seminar, March 2005 Neutron Matter on the.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Precision Charmed Meson Spectroscopy and Decay Constants from Chiral Fermions Overlap Fermion on 2+1 flavor Domain Wall Fermion Configurations Overlap.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Topology Change and EoS for Compressed Baryonic Matter WCU-APCTP 2013.
INTRODUCTION TO NUCLEAR LATTICE EFFECTIVE FIELD THEORY Young-Ho Song (RISP, Institute for Basic Science) RI meeting, Daejeon,
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Low energy scattering and charmonium radiative decay from lattice QCD
May the Strong Force be with you
Structure of the Proton mass
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
Hadrons and Nuclei : Chiral Symmetry and Baryons
Aspects of the QCD phase diagram
p, KK , BB from Lattice QCD Martin Savage Univ. of Washington
d*, a quark model perspective
Excited State Spectroscopy from Lattice QCD
有限密度・ 温度におけるハドロンの性質の変化
The np -> d p0 reaction measured with g11 data
Hyun Kyu Lee Hanyang University
Theory on Hadrons in nuclear medium
Presentation transcript:

Hadrons and Nuclei : Scattering Lattice Summer School Martin Savage Summer 2007 University of Washington

Why Scattering with Lattice QCD ?  Reproducing what is known is important check of lattice QCD, but intrinsically not interesting----not new physics  e.g. NN scattering at physical pion mass  Calculating quantities that cannot be determined (well) any other way is the underlying motivation  e.g. YN scattering, nnn, weak-YN, d ¾ d ­ ( m q )

Present Nuclear Theory fails to Reproduce (a few!) Precise Expts

Courtesy of W. Tornow, data from TUNL, calculations by Present Nuclear Theory fails to Reproduce Precise expts (2)

Worlds YN Data Polinder et al

   p → K     Production)    p →    p  Scattering)    n → K   Production)  p →  p  Scattering) Hyperon-Nucleon Scattering Experiments Kozi Nakai (KEK) (talk given at Hypernuclear 2006 (Mainz))

Beam SCITIC0    Production   p Scattering  Production  p Scattering Hyperon-Nucleon Scattering Experiments Kozi Nakai (KEK) su suu Weak decay Strong scatter

Neutron Stars (1)  Why are we interested in scattering of strange baryons (and mesons) ?  Supernova Remnant ?  neutron stars or black holes, or black holes, ….. kaon condensation, strange baryons ? …..

Neutron Stars (2) Atmosphere Envelope Crust Outer Core Inner Core Homogeneous Matter Lasagna Nuclei + Neutron superfluid n-superfluid and p superconductor Reddy and Page astro-ph/

Neutron Stars (3) : Hyperons in Neutron Matter n   n YN interactions shift the mass of Y in a neutron background H » ® § y § n y n + M ( 0 ) § § y § + :::: ! ³ M ( 0 ) § + ®½ n ´ § y § + :::: M ean ¡ F i e ld

Neutron Stars (4) Vacuum - Masses With Interactions -- meson exchange model WithOUT Interactions We Need QCD Calculations to Improve upon Model Calcs Reddy and Page astro-ph/

Low-Energy Scattering, Phase-Shifts and Scattering Parameters (1) Analytic function of com energy Review :

Low-Energy Scattering, Phase-Shifts and Scattering Parameters (2) k co t ± = ¡ 1 a r k 2 + ::: a = Scattering Length r = Effective Range Can take any valueSize dictated by range of interaction

Low-Energy Scattering, Phase-Shifts and Scattering Parameters (3) k = 0 k = = 0 a ± Ã = 1 ¡ r a

Maiani-Testa no-go Theorem (1)  (s) ? S-matrix elements cannot be extracted from infinite-volume Euclidean-space correlation functions except at kinematic thresholds.

Maiani-Testa no-go Theorem (2) j pp i ou t = S y j pp i i n ou t h pp j pp i i n = i n h pp j S j pp i i n = e i 2 ± ( b e l ow i ne l as t i c t h res h o ld s ) Consider the Euclidean-space correlation function associated with a source J(x) that couples to two protons G E ( t 1 ; t 2 ;q ) = h 0 j © q ( t 1 ) © ¡ q ( t 2 ) J ( 0 )j 0 i J(0) (s-wave to s-wave) © q ( t ) © ¡ q ( t ) Interpolating fields for proton

Maiani-Testa no-go Theorem (3) This dominates at long times unless 2 E q is equal to the minimum value of E n Away from Kinematic threshold…..cannot isolate S-matrix elements from Euclidean space correlators h 0 j Á ( 0 ; 0 )j p i = p Z © q = R d 3 xe ¡ i q ¢ x Á ( x ; t )

Maiani-Testa no-go Theorem (4) In Minkowski space 2 E q P q ( J ; t 2 ) ! 1 2 ( ou t h pp j J ( 0 )j 0 i ¡ i n h pp j J ( 0 )j 0 i)

Luscher (1) Compute something else !!!! Work in finite-volume and look at energy-levels Non-Relativistic QM analysis = Lee + Yang E ( j ) 0 = h 0 ( 0 ) j ^ V j 0 ( j ¡ 1 ) i ; J-th order g.s. energy-shift Unperturbed g.s. wavefunction J-th order contribution to g.s. wavefunction

Lee + Yang (2) k = 2 ¼ L n n = ( n x ; n y ; n z ) h r j k i = 1 L 3 = 2 e i k ¢ r h r 1 ; r 2 j k ; ¡ k i = 1 L 3 e i k ¢ ( r 1 ¡ r 2 ) P er i o d i c B. C. g i ve r ! r + m L

Lee + Yang (3) : Energies ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) ¢E 0 = E ( 1 ) 0 + E ( 2 ) 0 + ::: = ´ L ¡ ´ M 4 ¼ 2 L X n 6 = 0 1 j n j 2 + ::: 3 5

Lee + Yang (4) : Threshold Scattering ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) f = ¡ ¹ 2 ¼ Z d 3 r V ( r ) ¡ ¹ 2 ¼ Z d 3 r 1 Z d 3 r 2 V ( r 1 ) G + ( r 1 ; r 2 ) V ( r 2 ) + ::: = ¡ ¹´ 2 ¼ + ¹ 2 ´ 2 ¼ Z d 3 p ( 2 ¼ ) 3 1 j p j 2 + i ² + :::: = a ´ = ¡ 4 ¼a M · 1 ¡ 4 ¼a Z d 3 p ( 2 ¼ ) 3 1 j p j 2 + i ² + ::: ¸

Lee + Yang (4) : Combining ^ V = ´ ± 3 ( ^ r 1 ¡ ^ r 2 ) ¢E 0 = ¡ 4 ¼a ML ³ a ¼ L ´ ¤ j X n 6 = 0 1 j n j 2 ¡ 4 ¼ ¤ j 1 A + ::: 3 5

Luscher (5) : True in QFT !! Below Inelastic thresholds and lattices L >> R UV regulator Measure on lattice S ( x ) = l i m ¤ j ! 1 ¤ j X j 1 j j j 2 ¡ x 2 ¡ 4 ¼ ¤ j pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶

Luscher (6) : Methodology? (x,t) (y,t) source G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! e ¡ ( E 2 ¡ 2 M ) t G ( p 1 = 0 ; p 2 = 0 ) 2 ( t ) = Z d 3 x Z d 3 y G 2 ( y ; t ;x ; t ; 0 ; 0 ) ! A 2 e ¡ E 2 t G ( p = 0 ) 1 ( t ) = Z d 3 x G 1 ( x ; t ; 0 ; 0 ) ! A 1 e ¡ M t

Luscher (7) : Methodology? G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! e ¡ ( E 2 ¡ 2 M ) t T = E 2 ¡ 2 M = 2 p q 2 + M 2 ¡ 2 M pco t ± ( T ) = 1 ¼ L S µ q L 2 ¼ ¶

Many-Bosons (1) 3-boson interaction numbers

3-Bosons (1)

I=2   Simplest hadronic scattering process  Physics Wise  Computationally C ( t ) = G ( 0 ; 0 ) 2 ( t ) h G ( 0 ) 1 ( t ) i 2 ! A 2 A 2 1 e ¡ ( E 2 ¡ 2 M ) t l og · C ( t ) C ( t + 1 ) ¸ ! E 2 ( t ) ¡ 2 M = T ( t ) = 2 p q 2 ( t ) + M 2 ¡ 2 M pco t ± ( T ( t )) = 1 ¼ L S µ q ( t ) L 2 ¼ ¶

I=2  [ m ¼ a ¼ + ¼ + ]( t ) m ¼ » 350 M e V e.g. Beane et al, arXiv:

I=2  Beane et al, arXiv: m ¼ a I = 2 ¼¼ = ¡ m 2 ¼ 8 ¼ f 2 ¼ ( 1 + m 2 ¼ 16 ¼ 2 f 2 ¼ " 3 l og µ m 2 ¼ ¹ 2 ¶ ¡ 1 ¡ l I = 2 ¼¼ ( ¹ ) #) (2007)

I=2  Beane et al, arXiv: Ã m ¼ ; f ¼

Lattice m  /f  is the way to go Two-flavor mixed-action Chen, O’Connell, Walker-Loud m ¼ a I = 2 ¼¼ = ¡ m 2 ¼ 8 ¼ f 2 ¼ ( 1 + m 2 ¼ ( 4 ¼ f ¼ ) 2 · 3 l n µ m 2 ¼ ¹ 2 ¶ ¡ 1 ¡ l I = 2 ¼¼ ( ¹ ) ¡ ~ ¢ 4 j u 6 m 4 ¼ ¸ )

I=0 ?  Computationally expensive Need to compute N ~ Volume propagators I = 2 I = 0 u u d d u u

I=0  Point to all propagators all to all propagators

CP-PACS : Phase-shift (extrapolation) CP-PACS 12 3 X X X 48 L = 2.5 fm n f = 2 (2002)

 – Scattering phase-shift CP-PACS

K  and KK Scattering Lattice QCD + Chiral Symmetry b = fm (S. Beane, P. Bedaque, T. Luu, K. Orginos, E. Pallante, A.Parreno, mjs) K +  + K +

Baryon Potentials from LQCD Why bother with the scattering amplitude…just calculate the potential, and use that in the Schrodinger equation !!! h 0 j ^ O 1 ( x ; t 0 ) i ® ^ O 1 ( y ; t 0 ) j ¯ j à 0 i = Z ( S ; I ) NN (j r j)h 0 j N ( x ; t 0 ) i ® N ( y ; t 0 ) j ¯ j à 0 i + ::: ^ O 1 ( x ; t ) i ® = ² a b c q i ; c ® ¡ q a ; T C ° 5 ¿ 2 q b ¢ ( x ; t ) G NN ( x ; y ; t ) = h 0 j ^ O 1 ( x ; t ) i ® ^ O 1 ( y ; t ) j ¯ J ( 0 )j 0 i = X n h 0 j ^ O 1 ( x ; 0 ) i ® ^ O 1 ( y ; 0 ) j ¯ j à n ih à n j J ( 0 )j 0 i e ¡ E n t 2 E n

Baryon Potentials from LQCD (2) Potential between two infinitely massive mesons is well-defined e.g. B-mesons in the HQ limit – E = V(R) r is a constant of the motion U E ( r ) = E ¹ r 2 G NN G NN 1 2 ¹ r 2 G NN + U E ( r ) G NN = EG NN trivially 1 ] Energy-dependent potential… i.e. each different energy requires a different potential ….not as useful as it first sounds !!! 2 ] NOT unique … only constrained to reproduce ONE quantity ….  ( E 0 )

Q Q QQ Direct Exchange BB t-channel Potentials... Insight into NN ? B B BB ¼¼¼ B -meson h as I = 1 2 ; s l = 1 2

BB (2) (W. Detmold, K.Orginos, mjs, 2007) Quenched : a = 0.1 fm

Periodic Boundary Conditions and Images

BB (3) (W. Detmold, K.Orginos, mjs )

Tensor Force between BB ? Deuteron

Quenched Potential : Hairpins  No strong anomaly ´ 0 i sa l soapseu d o- G o ld s t one b oson G ´´ ( q 2 ) = i ( q 2 ¡ m 2 ¼ + i ² ) + i ( M 2 0 ¡ ® © q 2 ) ( q 2 ¡ m 2 ¼ + i ² ) 2 V ( Q ) ( r ) = 1 8 ¼ f 2 ¾ 1 ¢ r ¾ 2 ¢ r µ g 2 A ¿ 1 ¢ ¿ 2 r + g ¡ ® © r ¡ g 2 0 M 2 0 ¡ ® © m 2 ¼ 2 m ¼ ¶ e ¡ m ¼ r Dominates at long-distances

Nucleons on the Lattice ~ ¾ x = p h G 2 i ¡ h G i 2 h G i ! e ( M N ¡ 3 2 m ¼ ) t 3 ¼ Mesons are easy, Nucleons are hard and two nucleons are even harder !!! G.P. Lepage, Tasi 1989

Large Scattering Lengths are OK ! Require : L >> r 0 but ANY a  M  = 350 MeV 2.5 fm lattices...  YESTERDAY !!

 M  = 350 MeV 2.5 fm lattices...  TODAY !! NN on the Lattice ~E L 2 Deuteron 1st continuum 2nd continuum (S. Beane, P. Bedaque, A.Parreno, mjs) Effective Field Theory Calculation at Finite-Volume

NN Correlators 1S01S0 3 S D 1 G Fully-Dynamical QCD Domain-Wall Valence on rooted-Staggered Sea  C n Exp [-E n t] n C 0 Exp [-E 0 t]

NN Scattering (S. Beane, P. Bedaque, K. Orginos, mjs ; PRL97, (2006)) 1 S 0 : pp, pn, nn 3 S D 1 : pn : deuteron a ~ 1/m  Scale-Invariance

NN is Fine-Tuned a 1 S 0 n p = ¡ 23 : 710 § 0 : 030 f m ; r 1 S 0 n p = + 2 : 73 § 0 : 03 a 3 S 1 n p = + 5 : 432 § 0 : 005 f m ; r 3 S 1 n p = + 1 : 73 § 0 : 02 a >> r

Toy-Model r = 0 a = + 1 ~E L 2

Hyperon-N Interactions (S.Beane, P.Bedaque, T.Luu, K.Orginos, E.Pallante, A.Parreno, mjs, 2006) |k| = 261 MeV |k| = 179 MeV |k| = 255 MeV|k| = 169 MeV

 Interactions --- I=0, J=0, s=2 -ve Energy Shift ? M  = 590 MeV

Luscher Relation -- revisited pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶ V = 0 ! a = r = :::: = 0 S ( ´ ) = 1 Non-interacting particles k = 2 ¼ L n n = ( n x ; n y ; n z ) T < 0T > 0 Bound-state or Scattering state ?

Bound states are also described !! ° + pco t ± j p 2 = ¡ ° 2 = 0 E ¡ 1 = ¡ ° 2 M · ° L 1 1 ¡ 2 ° ( pco t ± ) 0 e ¡ ° L + ::: ¸ pco t ± ( E ) = 1 ¼ L S µ p L 2 ¼ ¶ (S. Beane, P. Bedaque, A.Parreno, mjs)

Bound States vs Scattering States (1) L = 200 b 1/r = M  = 350 MeVa = 10, 5, 1, -1, -5, -10 fm () P L 2  2 p cot  ´ = b = fm Bound States

Bound States vs Scattering States (3) L = 20 b 1/r = M  = 350 MeVa = 10, 5, 1, -1, -5, -10 fm () P L 2  2 p cot  ´ << ´ 0 ! mos t pro b a bl ya b oun d s t a t e ´ 0 ´ =

NN Resource Requirements with Current Algorithms NN Scattering Length fixed at 2 fm for demonstrative purposes Domain-Wall Propagator Generation ONLY !! Does not include time for lattice generation

Contractions  Usually  Lattice generation > propagator generation > contractions Not so for nuclear physics Need high statistics.. Many propagators per lattice Large number of quarks in initial and final states con t rac t i ons » u !d! s ! = ( A + Z ) ! ( 2 A ¡ Z ) ! S ! P ro t on: N con t : = U : N con t : =

nnn  Important for neutron rich nuclei  Lattice calc. is not as easy as   Cannot have all at rest as they are fermions

Closing Remarks on Scattering  Two hadron scattering can be studied with lattice QCD by studying the energy eigenstates at finite-volume  Simplest system well-understood  Baryon-baryon systems still very primitive.. a lot of room for improvement and contribution

The END