Relational Algebra Wrap-up and Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 11, 2003.

Slides:



Advertisements
Similar presentations
Relational Calculus and Datalog
Advertisements

From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 22, 2005.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Calculus Chapter 4, Part B.
D ATABASE S YSTEMS I R ELATIONAL A LGEBRA. 22 R ELATIONAL Q UERY L ANGUAGES Query languages (QL): Allow manipulation and retrieval of data from a database.
1 541: Relational Calculus. 2 Relational Calculus  Comes in two flavours: Tuple relational calculus (TRC) and Domain relational calculus (DRC).  Calculus.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A Modified by Donghui Zhang.
1 Relational Calculus Chapter 4 – Part II. 2 Formal Relational Query Languages  Two mathematical Query Languages form the basis for “real” languages.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4.
Relational Algebra Content based on Chapter 4 Database Management Systems, (Third Edition), by Raghu Ramakrishnan and Johannes Gehrke. McGraw Hill, 2003.
1 Relational Algebra & Calculus. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 52 Database Systems I Relational Algebra.
From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 23, 2004.
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 16, 2004 Some slide content.
Introduction to SQL, the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 16, 2003.
Relational Calculus. Another Theoretical QL-Relational Calculus n Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus.
1 Lecture 5: Relational calculus
Relational Calculus CS 186, Spring 2007, Lecture 6 R&G, Chapter 4 Mary Roth   We will occasionally use this arrow notation unless there is danger of.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4, Part A.
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 21, 2004 Some slide content.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 6 The Relational Algebra and Relational Calculus.
Relational Model & Algebra Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 13, 2005 Some slide content courtesy.
1 Relational Algebra and Calculus Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Rutgers University Relational Algebra 198:541 Rutgers University.
Revision of Midterm 2 Prof. Sin-Min Lee Department of Computer Science.
Rutgers University Relational Calculus 198:541 Rutgers University.
CSCD343- Introduction to databases- A. Vaisman1 Relational Algebra.
1 Relational Algebra and Calculus Chapter 4. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.
The Relational Model: Relational Calculus
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Calculus Chapter 4, Section 4.3.
1 CS 430 Database Theory Winter 2005 Lecture 6: Relational Calculus.
Relational Algebra & Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 12, 2007 Some slide content.
CSE314 Database Systems The Relational Algebra and Relational Calculus Doç. Dr. Mehmet Göktürk src: Elmasri & Navanthe 6E Pearson Ed Slide Set.
Database Management Systems, R. Ramakrishnan1 Relational Calculus Chapter 4.
Revision for Final Exam Prof. Sin-Min Lee Department of Computer Science.
1 Relational Algebra. 2 Relational Query Languages v Query languages: Allow manipulation and retrieval of data from a database. v Relational model supports.
Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 17, 2007 Some slide content courtesy.
Relational Calculus R&G, Chapter 4. Relational Calculus Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC). Calculus.
1 Relational Algebra & Calculus Chapter 4, Part A (Relational Algebra)
1 Relational Algebra and Calculas Chapter 4, Part A.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Xin Zhang.
Relational Algebra.
1 Relational Algebra Chapter 4, Sections 4.1 – 4.2.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 4 Relational Algebra.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Xin Zhang.
CSCD34-Data Management Systems - A. Vaisman1 Relational Algebra.
Database Management Systems, R. Ramakrishnan1 Relational Algebra Module 3, Lecture 1.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Module A: Formal Relational.
1 CSE544 Monday April 26, Announcements Project Milestone –Due today Next paper: On the Unusual Effectiveness of Logic in Computer Science –Need.
From the Calculus to the Structured Query Language Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 19, 2007.
Copyright © 2004 Pearson Education, Inc.. Chapter 6 The Relational Algebra and Relational Calculus.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Algebra Chapter 4.
Database Management Systems, R. Ramakrishnan1 Relational Calculus Chapter 4, Part B.
Database Management Systems 1 Raghu Ramakrishnan Relational Algebra Chpt 4 Jianping Fan.
Relational Calculus. Relational calculus query specifies what is to be retrieved rather than how to retrieve it. – No description of how to evaluate a.
1 Relational Algebra. 2 Relational Query Languages  Query languages: Allow manipulation and retrieval of data from a database.  Relational model supports.
Relational Calculus Chapter 4, Section 4.3.
Relational Algebra & Calculus
CSE202 Database Management Systems
Relational Calculus Chapter 4, Part B
Chapter 6: Formal Relational Query Languages
Relational Model & Algebra
Relational Model & Algebra
Relational Algebra 461 The slides for this text are organized into chapters. This lecture covers relational algebra, from Chapter 4. The relational calculus.
Relational Calculus Zachary G. Ives November 15, 2018
Relational Algebra & Calculus
Chapter 6: Formal Relational Query Languages
Chapter 6: Formal Relational Query Languages
Relational Algebra & Calculus
Relational Calculus Chapter 4, Part B
Presentation transcript:

Relational Algebra Wrap-up and Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 11, 2003 Some slide content courtesy of Susan Davidson & Raghu Ramakrishnan

2 Relational Algebra  Relational algebra operations operate on relations and produce relations (“closure”) f: Relation -> Relationf: Relation x Relation -> Relation  Six basic operations:  Projection   (R)  Selection   (R)  UnionR 1 [ R 2  DifferenceR 1 – R 2  ProductR 1 £ R 2  (Rename)   (R)  And some other useful ones:  JoinR 1 ⋈  R 2  SemijoinR 1 ⊲  R 2  IntersectionR 1 Å R 2  DivisionR 1 ¥ R 2

3 Example Data Instance sidname 1Jill 2Qun 3Nitin 4Marty fidname 1Ives 2Saul 8Roth sidexp-gradecid 1A A A 3C C cidsubjsem DBF AIS ArchF03 fidcid STUDENT Takes COURSE PROFESSOR Teaches

4 Natural Join and Intersection Natural join: special case of join where  is implicit – attributes with same name must be equal: STUDENT ⋈ Takes ´ STUDENT ⋈ STUDENT.sid = Takes.sid Takes Intersection: as with set operations, derivable from difference A-B B-A A B A Å B ≡ (A [ B) – (A – B) – (B – A) ≡ (A - B) – (B - A)

5 Division  A somewhat messy operation that can be expressed in terms of the operations we have already defined  Used to express queries such as “The fid's of faculty who have taught all subjects”  Paraphrased: “The fid’s of professors for which there does not exist a subject that they haven’t taught”

6 Division Using Our Existing Operators  All possible teaching assignments: Allpairs:  NotTaught, all (fid,subj) pairs for which professor fid has not taught subj:  Answer is all faculty not in NotTaught:  fid,subj (PROFESSOR £  subj (COURSE)) Allpairs -  fid,subj (Teaches ⋈ COURSE)  fid (PROFESSOR) -  fid (NotTaught) ´  fid (PROFESSOR) -  fid (  fid,subj (PROFESSOR £  subj (COURSE)) -  fid,subj (Teaches ⋈ COURSE))

7 Division: R 1  R 2  Requirement: schema(R 1 ) ¾ schema(R 2 )  Result schema: schema(R 1 ) – schema(R 2 )  “Professors who have taught all courses”:  What about “Courses that have been taught by all faculty”?  fid (  fid,subj ( Teaches ⋈ COURSE)   subj (COURSE))

8 The Big Picture: SQL to Algebra to Query Plan to Web Page SELECT * FROM STUDENT, Takes, COURSE WHERE STUDENT.sid = Takes.sID AND Takes.cID = cid STUDENT Takes COURSE Merge Hash by cid Optimizer Execution Engine Storage Subsystem Web Server / UI / etc Query Plan – an operator tree

9 Hint of Future Things: Optimization Is Based on Algebraic Equivalences  Relational algebra has laws of commutativity, associativity, etc. that imply certain expressions are equivalent in semantics  They may be different in cost of evaluation!  c Ç d (R) ´  c (R) [  d (R)  c (R 1 £ R 2 ) ´ R 1 ⋈ c R 2  c Ç d (R) ´  c (  d (R))  Query optimization finds the most efficient representation to evaluate (or one that’s not bad)

10 Relational Calculus: A Logical Way of Expressing Query Operations  First-order logic (FOL) can also be thought of as a query language, and can be used in two ways:  Tuple relational calculus  Domain relational calculus  Difference is the level at which variables are used: for attributes (domains) or for tuples  The calculus is non-procedural (declarative) as compared to the algebra  More like what we’ll see in SQL  More convenient to express certain things

11 Domain Relational Calculus Queries have form: { | p} Predicate: boolean expression over x 1,x 2, …, x n  Precise operations depend on the domain and query language – may include special functions, etc.  Assume the following at minimum:  RX op Y X op constconst op X where op is , , , , ,  x i,x j,… are domain variables domain variables predicate

12 More Complex Predicates Starting with these atomic predicates, build up new predicates by the following rules:  Logical connectives: If p and q are predicates, then so are p  q, p  q,  p, and p  q  (x>2)  (x<4)  (x>2)   (x>0)  Existential quantification: If p is a predicate, then so is  x.p   x. (x>2)  (x<4)  Universal quantification: If p is a predicate, then so is  x.p   x.x>2   x.  y.y>x

13 Some Examples  Faculty ids  Course names for courses with students expecting a “C”  Courses taken by Jill

14 Logical Equivalences  There are two logical equivalences that will be heavily used:  p  q   p  q (Whenever p is true, q must also be true.)   x. p(x)   x.  p(x) (p is true for all x)  The second can be a lot easier to check!

15 Free and Bound Variables  A variable v is bound in a predicate p when p is of the form  v… or  v…  A variable occurs free in p if it occurs in a position where it is not bound by an enclosing  or   Examples:  x is free in x>2  x is bound in  x.x>y

16 Can Rename Bound Variables Only  When a variable is bound one can replace it with some other variable without altering the meaning of the expression, providing there are no name clashes  Example:  x.x>2 is equivalent to  y.y>2  Otherwise, the variable is defined outside our “scope”…

17 Safety  Pitfall in what we have done so far – how do we interpret: { |   STUDENT}  Set of all binary tuples that are not students: an infinite set (and unsafe query)  A query is safe if no matter how we instantiate the relations, it always produces a finite answer  Domain independent: answer is the same regardless of the domain in which it is evaluated  Unfortunately, both this definition of safety and domain independence are semantic conditions, and are undecidable

18 Safety and Termination Guarantees  There are syntactic conditions that are used to guarantee “safe” formulas  The definition is complicated, and we won’t discuss it; you can find it in Ullman’s Principles of Database and Knowledge- Base Systems  The formulas that are expressible in real query languages based on relational calculus are all “safe”  Many DB languages include additional features, like recursion, that must be restricted in certain ways to guarantee termination and consistent answers

19 Mini-Quiz How do you write:  Which students have taken more than one course from the same professor?  What is the highest course number offered?

20 Translating from RA to DRC  Core of relational algebra: , , , x, -  We need to work our way through the structure of an RA expression, translating each possible form.  Let TR[e] be the translation of RA expression e into DRC.  Relation names: For the RA expression R, the DRC expression is { |  R}

21 Selection: TR[   R]  Suppose we have   (e’), where e’ is another RA expression that translates as: TR[e’]= { | p}  Then the translation of  c (e’) is { | p  ’} where  ’ is obtained from  by replacing each attribute with the corresponding variable  Example: TR[  #1=#2  #4>2.5 R] (if R has arity 4) is { |  R  x 1 =x 2  x 4 >2.5}

22 Projection: TR[  i 1,…,i m (e)]  If TR[e]= { | p} then TR[  i 1,i 2,…,i m (e)]= { |  x j 1,x j 2, …, x j k.p}, where x j 1,x j 2, …, x j k are variables in x 1,x 2, …, x n that are not in x i 1,x i 2, …, x i m  Example: With R as before,  #1,#3 (R)={ |  x 2,x 4.  R}

23 Union: TR[R 1  R 2 ]  R 1 and R 2 must have the same arity  For e 1  e 2, where e 1, e 2 are algebra expressions TR[e 1 ]={ |p} and TR[e 2 ]={ |q}  Relabel the variables in the second: TR[e 2 ]={ |q’}  This may involve relabeling bound variables in q to avoid clashes TR[e 1  e 2 ]={ |p  q’}.  Example: TR[R 1  R 2 ] = { |  R 1   R 2

24 Other Binary Operators  Difference: The same conditions hold as for union If TR[e 1 ]={ |p} and TR[e 2 ]={ |q} Then TR[e 1 - e 2 ]= { |p  q}  Product: If TR[e 1 ]={ |p} and TR[e 2 ]={ |q} Then TR[e 1  e 2 ]= { | p  q}  Example: TR[R  S]= { |  R   S }

25 Summary  Can translate relational algebra into (domain) relational calculus.  Given syntactic restrictions that guarantee safety of DRC query, can translate back to relational algebra  These are the principles behind initial development of relational databases  SQL is close to calculus; query plan is close to algebra  Great example of theory leading to practice!

26 Limitations of the Relational Algebra / Calculus Can’t do:  Aggregate operations  Recursive queries  Complex (non-tabular) structures  Most of these are expressible in SQL, OQL, XQuery – using other special operators  Sometimes we even need the power of a Turing- complete programming language