Relational Algebra Wrap-up and Relational Calculus Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems September 11, 2003 Some slide content courtesy of Susan Davidson & Raghu Ramakrishnan
2 Relational Algebra Relational algebra operations operate on relations and produce relations (“closure”) f: Relation -> Relationf: Relation x Relation -> Relation Six basic operations: Projection (R) Selection (R) UnionR 1 [ R 2 DifferenceR 1 – R 2 ProductR 1 £ R 2 (Rename) (R) And some other useful ones: JoinR 1 ⋈ R 2 SemijoinR 1 ⊲ R 2 IntersectionR 1 Å R 2 DivisionR 1 ¥ R 2
3 Example Data Instance sidname 1Jill 2Qun 3Nitin 4Marty fidname 1Ives 2Saul 8Roth sidexp-gradecid 1A A A 3C C cidsubjsem DBF AIS ArchF03 fidcid STUDENT Takes COURSE PROFESSOR Teaches
4 Natural Join and Intersection Natural join: special case of join where is implicit – attributes with same name must be equal: STUDENT ⋈ Takes ´ STUDENT ⋈ STUDENT.sid = Takes.sid Takes Intersection: as with set operations, derivable from difference A-B B-A A B A Å B ≡ (A [ B) – (A – B) – (B – A) ≡ (A - B) – (B - A)
5 Division A somewhat messy operation that can be expressed in terms of the operations we have already defined Used to express queries such as “The fid's of faculty who have taught all subjects” Paraphrased: “The fid’s of professors for which there does not exist a subject that they haven’t taught”
6 Division Using Our Existing Operators All possible teaching assignments: Allpairs: NotTaught, all (fid,subj) pairs for which professor fid has not taught subj: Answer is all faculty not in NotTaught: fid,subj (PROFESSOR £ subj (COURSE)) Allpairs - fid,subj (Teaches ⋈ COURSE) fid (PROFESSOR) - fid (NotTaught) ´ fid (PROFESSOR) - fid ( fid,subj (PROFESSOR £ subj (COURSE)) - fid,subj (Teaches ⋈ COURSE))
7 Division: R 1 R 2 Requirement: schema(R 1 ) ¾ schema(R 2 ) Result schema: schema(R 1 ) – schema(R 2 ) “Professors who have taught all courses”: What about “Courses that have been taught by all faculty”? fid ( fid,subj ( Teaches ⋈ COURSE) subj (COURSE))
8 The Big Picture: SQL to Algebra to Query Plan to Web Page SELECT * FROM STUDENT, Takes, COURSE WHERE STUDENT.sid = Takes.sID AND Takes.cID = cid STUDENT Takes COURSE Merge Hash by cid Optimizer Execution Engine Storage Subsystem Web Server / UI / etc Query Plan – an operator tree
9 Hint of Future Things: Optimization Is Based on Algebraic Equivalences Relational algebra has laws of commutativity, associativity, etc. that imply certain expressions are equivalent in semantics They may be different in cost of evaluation! c Ç d (R) ´ c (R) [ d (R) c (R 1 £ R 2 ) ´ R 1 ⋈ c R 2 c Ç d (R) ´ c ( d (R)) Query optimization finds the most efficient representation to evaluate (or one that’s not bad)
10 Relational Calculus: A Logical Way of Expressing Query Operations First-order logic (FOL) can also be thought of as a query language, and can be used in two ways: Tuple relational calculus Domain relational calculus Difference is the level at which variables are used: for attributes (domains) or for tuples The calculus is non-procedural (declarative) as compared to the algebra More like what we’ll see in SQL More convenient to express certain things
11 Domain Relational Calculus Queries have form: { | p} Predicate: boolean expression over x 1,x 2, …, x n Precise operations depend on the domain and query language – may include special functions, etc. Assume the following at minimum: RX op Y X op constconst op X where op is , , , , , x i,x j,… are domain variables domain variables predicate
12 More Complex Predicates Starting with these atomic predicates, build up new predicates by the following rules: Logical connectives: If p and q are predicates, then so are p q, p q, p, and p q (x>2) (x<4) (x>2) (x>0) Existential quantification: If p is a predicate, then so is x.p x. (x>2) (x<4) Universal quantification: If p is a predicate, then so is x.p x.x>2 x. y.y>x
13 Some Examples Faculty ids Course names for courses with students expecting a “C” Courses taken by Jill
14 Logical Equivalences There are two logical equivalences that will be heavily used: p q p q (Whenever p is true, q must also be true.) x. p(x) x. p(x) (p is true for all x) The second can be a lot easier to check!
15 Free and Bound Variables A variable v is bound in a predicate p when p is of the form v… or v… A variable occurs free in p if it occurs in a position where it is not bound by an enclosing or Examples: x is free in x>2 x is bound in x.x>y
16 Can Rename Bound Variables Only When a variable is bound one can replace it with some other variable without altering the meaning of the expression, providing there are no name clashes Example: x.x>2 is equivalent to y.y>2 Otherwise, the variable is defined outside our “scope”…
17 Safety Pitfall in what we have done so far – how do we interpret: { | STUDENT} Set of all binary tuples that are not students: an infinite set (and unsafe query) A query is safe if no matter how we instantiate the relations, it always produces a finite answer Domain independent: answer is the same regardless of the domain in which it is evaluated Unfortunately, both this definition of safety and domain independence are semantic conditions, and are undecidable
18 Safety and Termination Guarantees There are syntactic conditions that are used to guarantee “safe” formulas The definition is complicated, and we won’t discuss it; you can find it in Ullman’s Principles of Database and Knowledge- Base Systems The formulas that are expressible in real query languages based on relational calculus are all “safe” Many DB languages include additional features, like recursion, that must be restricted in certain ways to guarantee termination and consistent answers
19 Mini-Quiz How do you write: Which students have taken more than one course from the same professor? What is the highest course number offered?
20 Translating from RA to DRC Core of relational algebra: , , , x, - We need to work our way through the structure of an RA expression, translating each possible form. Let TR[e] be the translation of RA expression e into DRC. Relation names: For the RA expression R, the DRC expression is { | R}
21 Selection: TR[ R] Suppose we have (e’), where e’ is another RA expression that translates as: TR[e’]= { | p} Then the translation of c (e’) is { | p ’} where ’ is obtained from by replacing each attribute with the corresponding variable Example: TR[ #1=#2 #4>2.5 R] (if R has arity 4) is { | R x 1 =x 2 x 4 >2.5}
22 Projection: TR[ i 1,…,i m (e)] If TR[e]= { | p} then TR[ i 1,i 2,…,i m (e)]= { | x j 1,x j 2, …, x j k.p}, where x j 1,x j 2, …, x j k are variables in x 1,x 2, …, x n that are not in x i 1,x i 2, …, x i m Example: With R as before, #1,#3 (R)={ | x 2,x 4. R}
23 Union: TR[R 1 R 2 ] R 1 and R 2 must have the same arity For e 1 e 2, where e 1, e 2 are algebra expressions TR[e 1 ]={ |p} and TR[e 2 ]={ |q} Relabel the variables in the second: TR[e 2 ]={ |q’} This may involve relabeling bound variables in q to avoid clashes TR[e 1 e 2 ]={ |p q’}. Example: TR[R 1 R 2 ] = { | R 1 R 2
24 Other Binary Operators Difference: The same conditions hold as for union If TR[e 1 ]={ |p} and TR[e 2 ]={ |q} Then TR[e 1 - e 2 ]= { |p q} Product: If TR[e 1 ]={ |p} and TR[e 2 ]={ |q} Then TR[e 1 e 2 ]= { | p q} Example: TR[R S]= { | R S }
25 Summary Can translate relational algebra into (domain) relational calculus. Given syntactic restrictions that guarantee safety of DRC query, can translate back to relational algebra These are the principles behind initial development of relational databases SQL is close to calculus; query plan is close to algebra Great example of theory leading to practice!
26 Limitations of the Relational Algebra / Calculus Can’t do: Aggregate operations Recursive queries Complex (non-tabular) structures Most of these are expressible in SQL, OQL, XQuery – using other special operators Sometimes we even need the power of a Turing- complete programming language