Dramatic change in environments of galaxy disks and intergalactic space Suzuki et al. (2007,2010a) M101 銀河 Suzuki et al. (2010b) M101 Stephan’s Quintet.

Slides:



Advertisements
Similar presentations
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Advertisements

Toyoaki Suzuki (ISAS/JAXA) Hidehiro Kaneda (Nagoya Univ.) Takashi Onaka (Tokyo Univ.)
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Gas and Star Formation in the Circinus Galaxy Bi-Qing For ( 傅碧晴 ) SIEF John Stocker Fellow ICRAR / University of Western Australia Baerbel Koribalski (CSIRO.
ASKAP Continuum Surveys of Local Galaxies Michael Brown ARC Future Fellow Monash University.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Chania, Crete, August 2004 “The environment of galaxies” Pierre-Alain Duc Recycling in the galaxy environment F. Bournaud J. Braine U. Lisenfeld P. Amram.
RCW86, Vela Jr., W28 に付随する分 子雲 福井 康雄 March 13, Nagoya.
渦状銀河における GMC の進化と星形 成 Evolution of GMCs and star formation in spiral galaxies Nario Kuno Nobeyama Radio Observatory 1.NRO M33 All-Disk Survey of Giant.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
Molecular Clouds and Star Formation in the Magellanic Bridge and the SMC Yasuo Fukui, Norikazu Mizuno ( Nagoya University ) LMC SMC Magellanic Bridge Putman.
Observations of anomalous dust emission (AME) with AMI
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Sub-mm/mm astrophysics: How to probe molecular gas
AKARI と Spitzer による 近傍銀河の星間ダストの研究 H. Kaneda (ISAS/JAXA) T. Suzuki, T. Onaka, I. Sakon, T. Nakagawa 特定領域研究会@名古屋大学 Jun 「近傍銀河における、星間ダスト( cool dust/warm.
Mapping Hydrogen in the Galaxy, Galactic Halo and Local Group with the Galactic Arecibo L-Band Feed Array (GALFA) The GALFA-HI Survey starting with TOGS.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Margaret Meixner (STScI, JHU) March 7, 2013
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Figure 2: H  emission from NGC 1569 (Hunter et al. 1993). Note the numerous filaments extending far into the halo and the prominent H  arm in the west.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Mid-InfRAred Camera wo LEns (MIRACLE) for SPICA Takehiko Wada and team MIRACLE.
Massive Star Formation: The Role of Disks Cassandra Fallscheer In collaboration with: Henrik Beuther, Eric Keto, Jürgen Sauter, TK Sridharan, Sebastian.
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Star formation at intermediate scales: HII regions and Super-Star Clusters M. Sauvage, A. Contursi, L. Vanzi, S. Plante, T. X. Thuan, S. Madden.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Imaging Molecular Gas in a Nearby Starburst Galaxy NGC 3256, a nearby luminous infrared galaxy, as imaged by the SMA. (Left) Integrated CO(2-1) intensity.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
ALMA Science Examples Min S. Yun (UMass/ANASAC). ALMA Science Requirements  High Fidelity Imaging  Precise Imaging at 0.1” Resolution  Routine Sub-mJy.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Jet Propulsion Laboratory
Star Formation and H2 in Damped Lya Clouds
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
講義資料 2 京都大学大学院 2011 年 10 月 3-5 日 特別講義「電波天文学」 福井康雄 名古屋大学大学院 1.
Sébastien Muller (ASIAA, Taiwan) M. Guélin (IRAM) M. Dumke (ESO) R. Lucas (IRAM) Probing isotopic ratios at z=0.89 Molecular line absorptions in front.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
Ewan O’Sullivan (SAO) thanks to: J. Vrtilek, L. David, S. Giacintucci, S. Raychaudhury, A. Zezas, and others.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Studying ISM and star formation in M33 with ALMA Sachiko Onodera & NRO MAGiC Team: (M33 All-disk Survey of Giant Molecular Clouds) N. Kuno 1, T. Tosaki.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
KENNICUTT-SCHMIDT RELATION VARIETY AND STAR-FORMING CLOUD FRACTION
Mikako Matsuura National Astronomical Observatory of Japan
Presentation transcript:

Dramatic change in environments of galaxy disks and intergalactic space Suzuki et al. (2007,2010a) M101 銀河 Suzuki et al. (2010b) M101 Stephan’s Quintet (HCG92) Suzuki et al. 2007, 2010 Suzuki et al (submitted) High-velocity (150 km/s) HI gas infall → Four active star-forming regions Gas & dust stripping from galaxies → Intergalactic star-forming regions AKARI → Investigation of star formation acitivity on a kpc scale in nearby galaxies. AKARI → Investigation of star formation acitivity on a kpc scale in nearby galaxies. Toyoaki Suzuki (ISAS/JAXA)

Star-forming activity within the disk has never been discussed because of faint CO emission. → AKARI Star-forming activity within the disk has never been discussed because of faint CO emission. → AKARI 2 arcmin ESO 1. Transition stage between SBc and SBm ・ Optical image → Bar and two spiral arms ・ Metal poor : 12+log(O/H) = 8.2 (Hadfield et al. 2007) Cf. 8.1 for SMC, 8.4 for LMC ・ No significant gradient of O/H abundance (Walsh & Roy, 1997) ・ Metal poor : 12+log(O/H) = 8.2 (Hadfield et al. 2007) Cf. 8.1 for SMC, 8.4 for LMC ・ No significant gradient of O/H abundance (Walsh & Roy, 1997) 2. Star forming regions ・ Star forming regions over a wide field → Satellite HII regions around Supergiant HI shell ・ Star forming regions over a wide field → Satellite HII regions around Supergiant HI shell Ryder et al. (1995) Red : Hα Satellite HII regions (D=3.2 kpc, Vs=42 km/s) Cf. Typical size of HI shell D ~ 100 pc Ryder et al (1995) HI column density map ・ HI image → chaotic morphology. → Tidally disrupted by a companion?? ・ HI image → chaotic morphology. → Tidally disrupted by a companion?? Southern arm 3.2 kpc

→ Enhanced star formation at the supergiant HI shell. → Enhanced star formation at the supergiant HI shell. Starburst triggered by expanding supergiant HI shell in southern arm & satellite HII regions ?? Starburst triggered by expanding supergiant HI shell in southern arm & satellite HII regions ?? SFE : ≦ yr -1 for normal spiral ~ yr -1 for starburst SFE : ≦ yr -1 for normal spiral ~ yr -1 for starburst Kennicutt (1998) ■ Star formation efficiency (SFE) (Σ SFR /Σ gas [yr -1 ]) ■ Star formation efficiency (SFE) (Σ SFR /Σ gas [yr -1 ]) 4x x x x x10 -8 Contour: 24 um ■ AKARI observations (24 – 160 um) Cold dust (~20K) → Gas surface density, Σ gas Warm dust (~60K) → SFR surface density, Σ SFR ■ AKARI observations (24 – 160 um) Cold dust (~20K) → Gas surface density, Σ gas Warm dust (~60K) → SFR surface density, Σ SFR Southern arm ~ 2x10 -8 yr -1 !! > Nouthern arm Satellite HII reg. ~ 4-5x10 -9 yr -1 Southern arm ~ 2x10 -8 yr -1 !! > Nouthern arm Satellite HII reg. ~ 4-5x10 -9 yr -1 Color: SFE

■ Super shells have long been suggested as drivers of molecular cloud formation (and then star formation). However, conclusive observational evidence of super shell-associated molecular clouds is just a few of the examples because of poor spatial resolution. e.g. Dawson et al. (2010) ■ Super shells have long been suggested as drivers of molecular cloud formation (and then star formation). However, conclusive observational evidence of super shell-associated molecular clouds is just a few of the examples because of poor spatial resolution. e.g. Dawson et al. (2010) Object: reveal evidence of starburst triggered by expanding supergiant HI shell. Object: reveal evidence of starburst triggered by expanding supergiant HI shell. ■ A kpc-scaled super shell is expected to be capable of changing in ISM environment on galactic scale ( → impact on galaxy evolution). ■ A kpc-scaled super shell is expected to be capable of changing in ISM environment on galactic scale ( → impact on galaxy evolution). → ALMA gives chance to observe super shells in nearby galaxies. Those in face-on galaxies are less affected by contamination from unrelated emission, which can be problem in the case of our galaxy. → ALMA gives chance to observe super shells in nearby galaxies. Those in face-on galaxies are less affected by contamination from unrelated emission, which can be problem in the case of our galaxy. → NGC1313 that has the largest super HI shell (3 kpc) is a best candidate for ALMA observation. Very active star formation in the southern arm and satellite HII regions may be triggered by expanding supergiant HI shell. → NGC1313 that has the largest super HI shell (3 kpc) is a best candidate for ALMA observation. Very active star formation in the southern arm and satellite HII regions may be triggered by expanding supergiant HI shell.

■ Observations 12CO(J=1-0) : Dynamics and spatial distribution of molecular clouds to associate CO clouds with the supergiant HI shell. Continuum 850um: Temperature map of cold dust to identify prestellar (T D ~10 K). regions. Stutz et al. (2010) ■ Observations 12CO(J=1-0) : Dynamics and spatial distribution of molecular clouds to associate CO clouds with the supergiant HI shell. Continuum 850um: Temperature map of cold dust to identify prestellar (T D ~10 K). regions. Stutz et al. (2010) ■ Sensitivity requirement From Swedish ESO Submilimeter Telescope, I 12CO(J=1-0) = 810 Jy/sr arm (Contursi et al. 2002) → ~40 μJy/beam (ALMA beam size 45”) ■ Sensitivity requirement From Swedish ESO Submilimeter Telescope, I 12CO(J=1-0) = 810 Jy/sr arm (Contursi et al. 2002) → ~40 μJy/beam (ALMA beam size 45”) ■ Target area : Supergiant HI shell in NGC Southern arm (early science phase) - All of the area along the shell (full science phase) ■ Target area : Supergiant HI shell in NGC Southern arm (early science phase) - All of the area along the shell (full science phase) ALMA FOV Southern arm 20 pc/arcsec From AKARI, B(450um) = 14 MJy/sr, B(850um) = 4 arm → T b ~ 1 mK

2 arcmin 3 μm4 μm7 μm11 μm 15 μm 24 μm65 μm90μm 140μm160μm

Flux intensity [ Jy ] Wavelength [ μm ] AKARI Spitzer IRAS T c = 21 K T w = 62 K M81 NGC1313 Flux intensity [ Jy ] Wavelength [ μm ] AKARI IRAS ISO HI mass surface density = 1.2x10 7 M ◎ /arcmin 2 (Ryder et al. 1995) HI mass surface density = 1.2x10 7 M ◎ /arcmin 2 (Ryder et al. 1995) H2/HI mass ratio = 0.2 (ave.) (Israel et al. 1997) H2/HI mass ratio = 0.2 (ave.) (Israel et al. 1997) ~ SMC

Cold dust 分布 : HI gas 分布 & PAH と良い相関 Warm dust 分布 : HII region と良い相関 Cold dust 分布 : HI gas 分布 & PAH と良い相関 Warm dust 分布 : HII region と良い相関 5 bands (24, 65, 90, 140, 160 um) を用いて、各 bin 毎に SED fitting (amplitudes, temperatures: all free) Ryder et al (1995) HI column density

Spiral arms & bar と diffuse ISM に有意な冪の差が見られない。 Cf. N ≒ spiral arms (M81, M101) Jeans instability による星形成が ” 銀河円盤全体 ” で支配的か ? (1) N ≒ 1.5, (2) Spiral arms : 渦巻腕周囲で星形成、 (3) Diffuse ISM: Supershells 周囲で星形成 (1) N ≒ 1.5, (2) Spiral arms : 渦巻腕周囲で星形成、 (3) Diffuse ISM: Supershells 周囲で星形成 NGC1313 Diameter:1 kpc Σ gas = 1700 Σ cold_dust_mass Σ SFR = 5.6x (log Lw-0.6/1.04) Suzuki et al. (2010) 一定と仮定 Σ SFR ∝ Σ N gas Kennicutt 1998 NGC1313 Σ SFR ∝ ρ gas τ growth H Gravitational instability (Elmegreen 1994) Jeans instability : τ growth ∝ ρ 0.5 gas Ρ gas : Gas density τ growth : Instability growth rate H : disk height Ρ gas : Gas density τ growth : Instability growth rate H : disk height → Σ SFR ∝ Σ 1.5 Gas