MET 10: Chapter 2 Warming the Earth and Atmosphere Dr. Craig Clements San José State University.

Slides:



Advertisements
Similar presentations
The Atmosphere: Structure and Temperature
Advertisements

MET 112 Global Climate Change
Announcements Survey on Sakai Homework 1 on class web site (also available on Sakai) Quiz 1 available on Sakai after class (10 points) Pre-test on Sakai.
Temperature, heat, and energy balance
Chapter 22 Heat Transfer.
Energy Ability to do work Many different forms Conservation of energy (Law) Transformed: example: – Radiant to Thermal – Kinetic to Thermal (friction)
In the Atmosphere Thermal Energy Transfer. Temperature and Thermal Energy TEMPERATURE - a measure of the average kinetic energy of the individual particles.
Thermal Energy Transfer
Earth’s Atmosphere atmosphere water vapor troposphere stratosphere
MET 60: Chapter: 4 (W&H) and 2 (Stull) Radiative Transfer Dr. Craig Clements San José State University.
Outline Further Reading: Chapter 04 of the text book - matter and energy - radiation laws - solar and terrestrial radiation Natural Environments: The Atmosphere.
ATS Lecture 2 Energy & Radiation Surface Maps.
What happens to solar energy ? 1.Absorption (absorptivity=  ) Results in conduction, convection and long-wave emission 2.Transmission (transmissivity=
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 2 The Earth’s Energy Balance Dr. Craig Clements San José State University Outline.
1 Weather and Climate Bay Area Earth Science Institute (BAESI) Energy in the Atmosphere San Jose State University, January 24, 2004
Handout (yellow) Solar Energy and the Atmosphere Standard 3 Objective 1 Indicators a, b, and c Standard 3 Objectives 1, 2, and 3 Workbook Pages 3,
ENERGY FROM THE SUN Chapter 14.3 Pages Energy in the Atmosphere The sun is the source of ALL energy in our atmosphere. Three things that can.
1 BAESI - Global Warming: Food Climate Connections The Greenhouse Effect Dr. Eugene Cordero San Jose State University Outline  Greenhouse effect  Energy.
Solar Energy & the Atmosphere
Energy Transfer from Sun Electromagnetic energy is a type of energy that is radiated by the sun in the form of transverse waves vibrating at right angles.
Radiation, Insolation, and Energy Transfer. Solar Radiation: Sun to Earth Speed of light: 300,000 km/second (186,000 miles/sec.) Distance to Earth: 150.
Energy Processes in Earth Science Earth Science Mr. Clark Bethpage High School.
The Atmosphere B3: Weather Factors Part 1 – Energy in the Atmosphere.
Energy from the Sun Radiation is the transfer of energy by electromagnetic waves. Ninety-nine percent of the radiation from the Sun consists of visible.
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 2 The Earth’s Energy Balance Dr. Eugene Cordero San Jose State University Outline.
1 Met 10 Weather Processes Jeff Gawrych Temperature, Heat Transfer and Earth’s Energy Balance.
Energy: Warming the earth and Atmosphere
Chapter 13 States of Matter
Energy Transfer from Sun Electromagnetic energy is a type of energy that is radiated by the sun in the form of transverse waves vibrating at right angles.
Meteo 3: Chapter 2 Radiation and other forms of energy transfer Read Chapter 2.
Objectives Explain how radiant energy reaches Earth.
Overview of the Earth’s Atmosphere Composition – 99% of the atmosphere is within 30km of the Earth’s surface. – N 2 78% and O 2 21% – The percentages represent.
CHAPTER 14 Energy in the Atmosphere Section 1, pages
Earth Science Golodolinski/Black 2009
Energy: Warming the Earth & the Atmosphere
AOS February 19/21 Energy Transfer. Four mechanisms of transfer Conduction Convection Advection Radiation.
Ch Solar Energy and the Atmosphere
Heat – Thermal Energy ISCI What is Heat? Place your finger on the handle of a ‘hot’ pan. Ouch! Heat is energy that is transferred from one ‘system’
Heat Transfer and Energy Nick Bassill February 18 th 2009.
Climate Long time, Large Area. Weather short term, small area.
Unit 3 Lesson 3 Energy Transfer
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
Solar Energy and Energy Balance in the Atmosphere.
Lecture 2: Energy in the Atmosphere Vertical structure of the static atmosphere Basics from physics: force, work, heat Transferring energy in the atmosphere.
Energy Balance Chapter 18.
Earth’s Energy Balance
Atmosphere: Structure and Temperature Bell Ringers:  How does weather differ from climate?  Why do the seasons occur?  What would happen if carbon.
The Atmosphere Preview Section 2 Atmospheric Heating Concept Mapping.
Earth’s Atmosphere Energy Transfer in the Atmosphere Part Two.
Incoming & Outgoing of Energy of the Earth. The Earth’s Energy Balance The Earth's average temperature remains fairly constant from year to year. Therefore,
Kinetic Energy In The Atmosphere Kinetic Energy is the energy of motion Heat - the total kinetic energy of the atoms composing a substance (atmospheric.
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 3 The Earth’s Energy Balance Dr. Eugene Cordero San Jose State University Outline.
Weather and Climate Unit Investigative Science. * All materials are made of particles (atoms and molecules), which are constantly moving in random directions.
Lecture 2: Heat and radiation in the atmosphere. TEMPERATURE… is a measure of the internal heat energy of a substance. The molecules that make up all.
Topic 5 Energy. Energy is the ability to do work or cause change Kinetic energy: energy of motion  faster objects have more kinetic energy Temperature.
17 Chapter 17 The Atmosphere: Structure and Temperature.
Transfer of Energy Chapter Two. Review Questions  Questions for Review  All  Questions for Thought  1, 2, 5, 6, 7, 9, 11, 13, and 15.
AOS 100: Weather and Climate
Unit 9 Section 2: Solar Energy and the Atmosphere
Energy Transfer in the Atmosphere
Unit 3 Lesson 2 Energy Transfer
BAESI - Global Warming: Food Climate Connections
What is Energy? Energy – the ability to do work
Unit 3 Lesson 2 Energy Transfer
Energy Transfer in the Atmosphere
Weather & Climate – MTDI 1200OL Plymouth State University
Section 2: Solar Energy and the Atmosphere
Unit 3 Lesson 2 Energy Transfer
Solar Energy and the Atmosphere
Presentation transcript:

MET 10: Chapter 2 Warming the Earth and Atmosphere Dr. Craig Clements San José State University

Temperature Is the measure of the average speed or thermal energy of the particles in a substance. (How fast the atoms/molecules are moving)

Three temperature scales: KelvinKelvin CelsiusCelsius FahrenheitFahrenheit What does 0° K mean?What does 0° K mean? Absolute zero, molecules would posses minimum amount of energy and no thermal motion. °K= °C+273

Heat is energy in the process of being transferred from one object to another because of the temperature difference between them. Latent Heat (Hidden Warmth) Water vapor is an invisible gas that becomes visible when it changes into larger liquid or solid particles (such as ice). This process of transformation is known as a change of state or phase change. The heat energy required to change a substance such as water from one state to another is called latent heat.

Latent Heat (Hidden Warmth) Example: cooling produced by evaporating water Examine a small drop of water. At drop’s surface water molecules are constantly escaping (evaporating). Because the more energetic, fast-moving molecules escape most easily, the average motion of all the molecules left behind decreases. Since temperature is a measure of the average molecular motion, the slower motion suggests a lower water temperature. Evaporation is a cooling process

Evaporation is a cooling process because the energy needed to evaporate the water– to change its phase from liquid to a gas– comes from the water. The energy lost during evaporation can be thought of as carried away by the water vapor molecule. The energy is thus “stored” or “hidden” and we call this latent heat. Latent Heat (Hidden Warmth)

Condensation Opposite of evaporation is condensation. Condensation is a process where a gas changes into a liquid. Is condensation a cooling process or warming process? Warming.

Phase changes

Latent Heat Latent heat is an important source of atmospheric energy. Once the vapor molecules become separated from the earth’s surface, they are transported by the wind. Rising to high altitudes where the air is cold, the vapor changes into liquid and ice cloud particles. During these processes, a tremendous amount of heat energy is released into the environment.

There are three modes of energy transmission in the atmosphere.  Conduction: the transfer of energy in a substance by means of molecular excitation without any net external motion.  Convection: the transfer of energy by mass motions within a fluid or gas, resulting in actual transport of energy.  Radiation: the propagation of electromagnetic waves through space. Energy transmission

Conduction

Convection

During the process of convection, bubbles of air form at the surface and rise. These vertical currents are known as. During the process of convection, bubbles of air form at the surface and rise. These vertical currents are known as thermals. The horizontal motion of air (wind) carries properties of the air (temperature, moisture, etc.) with it. This is called advection. In meteorology, the vertical exchange of heat is called convection

Photographer unknown The sport of paragliding is dependent on thermals

The Rising and Sinking Air Game Take an invisible “blob” called an air parcel. This air parcel is wrapped with imaginary elastic, plastic like a balloon. The parcel can expand and contract freely. But…neither external air nor heat is able to mix with the air inside. Also, as the air parcel moves, it does not break apart, but remains as a single unit. At the earth’s surface the parcel has the same temperature and pressure as the surrounding air.

The Rising and Sinking Air Game Suppose we lift the parcel. Remember air pressure always decreases as we move up into the atmosphere. As the parcel rises, it enters a region where the surrounding air pressure is lower. To equalize the pressure, the parcel molecules inside push the parcel walls outward, expanding it. The molecules use some of their own energy to expand the parcel. This energy loss shows up as slower molecular speeds = lower parcel temperature. Air that rises always expands and cools!

The Rising and Sinking Air Game

If the parcel is lowered, it returns to a region where the air pressure is higher. The higher outside pressure squeezes (compresses) the parcel back to its original (smaller) size. Because the air molecules have a faster rebound velocity after striking the sides of the a collapsing parcel, the average speed of the molecules goes up. This increase in molecular speed represents a warmer parcel temperature. Therefore, Air that sinks always warms by compression!

Electromagnetic radiation  Radiation is the transfer of energy by rapid oscillations of electromagnetic fields.  The most important general characteristic is its wavelength ( ), ______________________________.  Radiation travels through space at the speed of light (3 x 10 8 m s -1 ) or 670,616,630 MPH. Defined as the crest-to-crest distance

Radiation  What emits radiation? –All objects with a temperature greater than 0°K emit some type of radiation (energy)  Examples:  Radiation laws: –Warmer objects emit more intensely than cold objects. (Stefan-Boltzmann Law) –Warmer objects emit a higher proportion of their energy at short wavelengths than cold objects. (Wien’s Law)

Wien’s Law: E = σT 4 λ = w / T λ = maximum wavelength (μm) w = constant = (μm K) T= temperature of the object (K) Stefan-Boltzmann Law: E = radiation emitted (W m -2 ) σ = Stefan-Boltzmann constant= 5.67 x (W m -2 K -4 ) T= temperature of the object (K)

Review questions  Considering the previous discussion –Which object would emit more (intensity) radiation: Earth or Sun? –If you were examining the radiation emitted by both the Sun and Earth, which would have a longer wavelength? –What wavelength radiation are you emitting right now? Sun Earth infrared

Solar Radiation (Sunlight)  Sunlight is primarily made up of the following: –Visible Light (44%) –Infrared Radiation (48%) –Ultraviolet Radiation (7%) Unit: 1  m = m

Terrestrial or Longwave Radiation  Planets mainly emit infrared radiation  Radiation emitted by planets occurs mainly at wavelengths _____ than those contained in solar radiation Solar Radiation (“Shortwave”) Terrestrial Radiation (“Longwave”) longer

Solar vs. Terrestrial Radiation  The sun is much hotter than planets; therefore, sunlight consists of shorter wavelengths than planetary radiation ;  Thus …

Energy from the Sun  Obviously, the Sun provides the Earth with it’s energy. The question is, how much of the Sun’s energy does the Earth get?  Sun’s energy is either –Scattered (reflected away) or –Absorbed  Scattering happens by bouncing off –Particles in the atmosphere –Earth’s surface  Absorption happens when certain gases absorb the energy –The reality is the only certain gases absorb certain wavelengths.

Absorption of radiation  Absorption of shortwave radiation by atmospheric gas molecules is fairly weak; –most absorption of shortwave radiation occurs at the Earth’s surface.  Most gases do not interact strongly with longwave radiation, however –Greenhouse gas molecules absorb certain wavelengths of longwave radiation.

Absorption of Radiation in the Earth’s Atmosphere

Fig 2.11

Incoming solar radiation  Each ‘beam’ of incoming sunlight can be either: –Reflected back to space:  Clouds  Atmosphere  Surface –Or absorbed; either by atmosphere (e.g. clouds or ozone) or Earth’s surface. Albedo

Recap  ______________ radiation comes from the sun and is composed of both ultraviolet and visible radiation  __________________ radiation comes from the Earth and is composed of infrared radiation  Recall that everything (above a temperature of 0K) emits some type of radiation (energy) with a particular wavelength. Shortwave or solar Longwave, terrestrial or infrared

Review - sensors that measure radiation  A _________________ measures solar radiation.  A__________________ measures infrared radiation (terrestrial) that comes from the Earth. Pyranometer Pyrgeometer