Research Co-ordination Meeting on Elements of Power Plant Design for Inertial Fusion Energy 4-7 November 2003 DESIGN CONCEPT OF FAST-IGNITION HEAVY ION.

Slides:



Advertisements
Similar presentations
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
Advertisements

Areal RF Station A. Vardanyan RF System The AREAL RF system will consist of 3 RF stations: Each RF station has a 1 klystron, and HV modulator,
Physics of Fusion Lecture 15: Inertial Confinement Fusion Lecturer: Dirk O. Gericke.
March 21-22, 2006 HAPL meeting, ORNL 1 Status of Chamber and Blanket Effort A. René Raffray UCSD With contributions from: M. Sawan B. Robson G. Sviatoslavsky.
SYSTEMS AND ENGINEERING TECHNOLOGY INVESTIGATION OF AN INERTIAL CONFINEMENT FUSION-FISSION HYBRID REACTOR Kiranjit Mejer PTNR Research Project 2009 Frazer-Nash.
Systems Analysis for Modular versus Multi-beam HIF Drivers * Wayne Meier – LLNL Grant Logan – LBNL 15th International Symposium on Heavy Ion Inertial Fusion.
Japan-US Workshop held at San Diego on April 6-7, 2002 How can we keep structural integrity of the first wall having micro cracks? R. Kurihara JAERI-Naka.
Assessment of Chamber Concepts for IFE Power Plants: The ARIES-IFE study Farrokh Najmabadi for the ARIES Team IFSA2001 September 9-14, 2001 Kyoto, Japan.
First Wall Thermal Hydraulics Analysis El-Sayed Mogahed Fusion Technology Institute The University of Wisconsin With input from S. Malang, M. Sawan, I.
Wayne R. Meier Lawrence Livermore National Lab Heavy Ion Fusion Modeling Update* ARIES e-Meeting October 17, 2001 * This work was performed under the auspices.
Design Considerations for Beam Port Insulator Rings
June 14-15, 2007/ARR 1 Trade-Off Studies and Engineering Input to System Code Presented by A. René Raffray University of California, San Diego With contribution.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley Christophe S. Debonnel 1,2 (1) Thermal Hydraulics Laboratory Department of Nuclear Engineering.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley C.S. Debonnel 1,2, S.S. Yu 2, P.F. Peterson 1 (1) Thermal Hydraulics Laboratory Department.
Impact of Liquid Wall on Fusion Systems Farrokh Najmabadi University of California, San Diego NRC Fusion Science Assessment Committee November 17, 1999.
Findings and Recommendations from Wetted-Wall IFE Designs Jeff Latkowski Lawrence Livermore National Laboratory March 9, 2001 Work performed under the.
October 24, Remaining Action Items on Dry Chamber Wall 2. “Overlap” Design Regions 3. Scoping Analysis of Sacrificial Wall A. R. Raffray, J.
ARIES-IFE Assessment of Operational Windows for IFE Power Plants Farrokh Najmabadi and the ARIES Team UC San Diego 16 th ANS Topical Meeting on the Technology.
Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein.
Laser IFE Program Workshop –5/31/01 1 Output Spectra from Direct Drive ICF Targets Laser IFE Workshop May 31-June 1, 2001 Naval Research Laboratory Robert.
Aug. 8-9, 2006 HAPL meeting, GA 1 Advanced Chamber Concept with Magnetic Intervention: - Ion Dump Issues - Status of Blanket Study A. René Raffray UCSD.
ILE, Osaka Concept and preliminary experiment on protection of final optics in wet-wall laser fusion reactor T. Norimatsu, K. Nagai, T. Yamanaka and Y.
Wayne R. Meier Lawrence Livermore National Lab Per Peterson UC Berkeley Updated Heavy Ion Driver Parameters for Snowmass Point Design ARIES Meeting July.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley Christophe S. Debonnel 1,2 (1) Thermal Hydraulics Laboratory Department of Nuclear Engineering.
The High Average Power Laser Program in DOE/DP Coordinated, focussed, multi-lab effort to develop the science and technology for Laser Fusion Energy Coordinated,
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
Development of the FW Mobile Tiles Concept Mohamed Sawan, Edward Marriott, Carol Aplin University of Wisconsin-Madison Lance Snead Oak Ridge National Laboratory.
Systems Modeling Update including Magnetic Deflection HAPL Program Meeting General Atomics August 8-9, 2006 Wayne Meier LLNL Work performed under the auspices.
Carbon Injector for FFAG
Falling Liquid Film Flow along Cascade- type First Wall of Laser-Fusion Reactor T. Kunugi, T. Nakai, Z. Kawara Department of Nuclear Engineering Kyoto.
The Heavy Ion Fusion Virtual National Laboratory UC Berkeley Christophe S. Debonnel Thermal Hydraulics Laboratory Department of Nuclear Engineering University.
Storage Ring : Status, Issues and Plans C Johnstone, FNAL and G H Rees, RAL.
ARR/April 8, Magnetic Intervention Dump Concepts A. René Raffray UCSD With contributions from: A. E. Robson, D. Rose and J. Sethian HAPL Meeting.
Moving Solid Walls Type of Moving Walls: 1- Solid pebbles falling down under gravity for intercepting ion and X-ray radiation. 2- Moving metallic surfaces.
Nuclear Thermal Hydraulic System Experiment
Robust Heavy Ion Fusion Target Shigeo KAWATA Utsunomiya Univ. Japan U.S.-J. Workshop on HIF December 18-19, 2008 at LBNL & LLNL.
Fast Z-Pinch Experiments at the Kurchatov Institute
1 Neutronics Parameters for the Reference HAPL Chamber Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
1 Some Considerations in Preparation for Starting Study On the Design of a Dry Wall Blanket for HAPL I. N. Sviatoslavsky, M. E. Sawan Fusion Technology.
1 mm 1.5 mm 2 mm 0.5 mm 1.5 mm ABSTRACT Within the framework of fusion technology research and development, a neutron source has long been considered a.
1. Fast ignition by hydrodynamic flow
Slide 1 The Heavy Ion Fusion Science Virtual National Laboratory Why heavy ions? Target requires: 3.5 – 6 MJ in ~ 10 ns  500 TW Range ~ 0.02 – 0.20 g/cm.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
Russian Research Center” Kurchatov Institute” Shock wave propagation near 450 GeV and 7 TeV proton beams in LHC collimator materials Alexander Ryazanov.
DESIGN WINDOWS FOR THIN AND THICK LIQUID PROTECTION SCHEMES IN IFE REACTOR CHAMBERS M. Yoda and S. I. Abdel-Khalik G. W. Woodruff School of Mechanical.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
Areal RF Station A. Vardanyan
S.M. Polozov & Ko., NRNU MEPhI
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
T. Kunugi, T. Nakai, Z. Kawara Department of Nuclear Engineering
DCLL TBM Reference Design
Conceptual Study for the Dynamic Control of Fusion Power Plant
Update on Systems Modeling and Analyses
Vacuum chamber for experiment HIHEX at FAIR
CLIC Damping ring beam transfer systems
Improvements to power flow modeling in the ARIES system code
A. R. Raffray, J. Pulsifer, M. S. Tillack, X. Wang
Accelerator R&D for Future Neutrino Projects
Measurements, ideas, curiosities
Trade-Off Studies and Engineering Input to System Code
Parameters of the NF Target
IFE Wetted-Wall Chamber Engineering “Preliminary Considerations”
Research Co-ordination Meeting of the IAEA CRP on “Elements of power
University of California, San Diego
CEPC Injector positron source
Lecture 15: Inertial Confinement Fusion Lecturer: Dirk O. Gericke
Advanced Research Electron Accelerator Laboratory
Aerosol Production in Lead-protected and Flibe-protected Chambers
A. Vertkov et al., SC “Red Star”, Moscow, Russia
Presentation transcript:

Research Co-ordination Meeting on Elements of Power Plant Design for Inertial Fusion Energy 4-7 November 2003 DESIGN CONCEPT OF FAST-IGNITION HEAVY ION FUSION POWER PLANT Medin S.A. Institute for High Energy Densities, Moscow, Russia Basko M.M. Churasov M.D. Koshkarev D.G. Sharkov B.Yu. Institute for Theoretical and Experimental Physics, Moscow, Russia Orlov Yu.N. Suslin V.M. Keldych Institute for Applied Mathematics, Moscow, Russia Slide № 1 Medin S.A. et al

Slide № 2 Medin S.A. et al FIHIF Driver Scheme

Slide № 3 Medin S.A. et al Beam parameters in HIF driver for fast ignition fusion Station nu mb er Ion ener gy (GeV ) RF freque ncy (MHz) Bunch current (A) Momentu m spread (x10 4 ) Emittanc e (  m) β=v/c ± ± ± ± ± ± Single bunch 20000± Single bunch 1600±

Slide № 4 Medin S.A. et al HIGH POWER HEAVY ION DRIVER Ions Ion energy (GeV) 100 Hollow Compression beam Energy (MJ) 7.1 (profiled) Duration (ns) 75 Rotation frequency (GHz) 1 Ignition beam Energy (MJ) 0.4 Duration (ns) 0.2 Main linac length (km) 11 Transmission line length (km) 5 Driver efficiency 0.25

Cylindrical FIHIF Target Slide № 5 Medin S.A. et al

Slide № 6 Medin S.A. et al Cylindrical FIHIF Target

Slide № 7 Medin S.A. et al CYLINDRICAL TARGET DT fuel mass (g)0.006 Total mass (g)3.696 Length (mm)7.1 ρR parameter (g/cm 2 )0.5 Burn fraction0.35 Gain100 Fusion energy (MJ)750 Energy partition X-ray (MJ)17 Ion debris (MJ)187 Neutrons (MJ)546

Density distribution in compressed cylindrical target for FIHIF (t=30ns) Slide № 8 Medin S.A. et al

REACTOR CHAMBER FOR FIHIF POWER PLANT Slide № 9 Medin S.A. et al

REACTOR CHAMBER CHARACTERISTICS Fusion energy per shot (MJ)750 Repetition rate (Hz)2 Li/Pb atom density (cm -3 )10 12 Coolant temperature ( o C)550 Explosion cavity diameter (m)8 Number of beam penetrations2 First wall materialSiC Coolant tubes materialV-4Cr-4Ti Energy multiplication1.096 Slide № 10 Medin S.A. et al

S.J. Zinkle 11 th APEX Meeting Argonne National Laboratory, May 10-12, 2000

Slide № 14 Medin S.A. et al

Evaporation-condensation dynamics Slide № 15 Medin S.A. et al

Slide № 16 Medin S.A. et al

Slide № 17 Medin S.A. et al Material of blanket zones R, cm  R, cm , g/cm 3 M, 10 3 kg Q/V, MJ/m 3 Q, MJ 1. PbLi 2. PbLi 3. SiC/ PbLi 4. PbLi 5. V/10Cr/5Ti 6. PbLi 7. V/10Cr/5Ti 8. PbLi 9. V/10Cr/5Ti 10. PbLi 11. V/10Cr/5Ti 12. PbLi 13. V/10Cr/5Ti 14. PbLi 15. V/10Cr/5Ti 16. HT-9 400,0 400,1 401,1 411,1 411,6 417,6 417,9 423,9 424,2 430,2 430,5 436,5 436,8 443,0 444,0 450, , , ,3 6 0,3 6 0,3 6, ,3 5,7 9,3 5,96 9,3 5,96 9,3 5,96 9,3 5,96 9,3 5,96 9,3 5,96 7,9 3  ,86 11,51 192,69 6,31 120,62 3,87 124,24 4,05 127,96 4,17 131,78 4,29 140,15 14,72 119,05 Total:  ,92 13,68 12,79 3,89 9,85 1,96 5,17 1,03 3,29 0,56 1,95 0,48 0,85 0,17 0,08 1,6  ,58 27,65 276,26 4,13 127,84 1,27 69,24 0,71 45,46 0,40 27,98 0,34 13,33 0,44 1,32 Total: 600 FIHIF Blanket Structure and Neutron Energy Deposition

Slide № 18 Medin S.A. et al ENERGY DEPOSITION IN BLANKET MATERIALS

Slide № 19 Medin S.A. et al

Slide № 20 Medin S.A. et al ENERGY CONVERSION SYSTEM Primary coolant loop Li 17 Pb 83 Max./min. temperature ( o C)550/350 Mass flow rate (ton/s)13.1 Pump power (MW)11.5 Intermediate coolant loop Na Max./min. temperature ( o C)500/300 Mass flow rate (ton/s)6.40 Pump power (MW)3.77 Steam cycle Steam parameters (MPa/ o C/ o C)18/470/470 Net efficiency0.417 Power plant parameters Net power (per 1 chamber) (MW)670 Net efficiency0.373

Slide № 21 Medin S.A. et al CONCLUSIONS The concept of power plant for fast ignition HIF involves a number of new components and devices. High power heavy ion driver and cylindrical target look to have clear basic design. The massive target causes some redistribution of energy fluxes resulting from microexplosion. Altogether the long driver train and target positioning in flight are problems of concern. The reactor chamber with wetted first wall has a minimum number of ports for beam injection. The composition of the reactor chamber of two sections makes easier the condensation problem and partly lessens pressure loading. The problems of coolant droplets and thermal stresses in blanket materials are of major concern in the reactor chamber. The energy conversion system consisting of three loops is a convenient object for the plant efficiency optimization and thermal equipment development.