Lecture 15 Tuesday 3/4/08 Enzymes Michealis-Menten Kinetics Lineweaver-Burk Plot Enzyme Inhibition.

Slides:



Advertisements
Similar presentations
Polymerization kinetics
Advertisements

Kinetics: Reaction Order Reaction Order: the number of reactant molecules that need to come together to generate a product. A unimolecular S  P reaction.
Enzymes, con't.. Substrate Activation (catalytic mechanisms) Strain on substrate –Weakens bonds –Makes more accessible for reaction Acid/base catalysis.
Enzyme Kinetics, Inhibition, and Control
Enzyme Kinetic Zhi Hui.
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 9.
Chemical kinetics: accounting for the rate laws
General Features of Enzymes Most biological reactions are catalyzed by enzymes Most enzymes are proteins Highly specific (in reaction & reactants) Involvement.
Enzymes Have properties shared by all catalysts Enhance the rates of both forward and reverse reactions so equilibrium is achieved more rapidly Position.
Lecture 2 August 3, 2005 Lehninger (4 th Edition), Chapter 6,
Medical Biochemistry, Lecture 24
Enzymes Have properties shared by all catalysts Enhance the rates of both forward and reverse reactions so equilibrium is achieved more rapidly Position.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Enzyme Kinetics Chapter 8. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S P –Rate meas’d by V = velocity.
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Enzyme Catalysis (26.4) Enzymes are catalysts, so their kinetics can be explained in the same fashion Enzymes – Rate law for enzyme catalysis is referred.
Chapter 12 Enzyme Kinetics, Inhibition, and Control Chapter 12 Enzyme Kinetics, Inhibition, and Control Revised 4/08/2014 Biochemistry I Dr. Loren Williams.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
HOW ENZYMES WORK. ENZYMES SPEED UP CHEMICAL REACTIONS Enzymes are biological catalysts – substances that speed a reaction without being altered in the.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY
Review session for exam-III Lectures The concept of “induced fit” refers to the fact that: A. Enzyme specificity is induced by enzyme-substrate.
Enzyme kinetics Why study the rate of enzyme catalyzed reactions? Study of reaction rates is an important tool to investigate the chemical mechanism of.
Chapter 6.3: Enzyme Kinetics CHEM 7784 Biochemistry Professor Bensley.
23.6 Enzymes Three principal features of enzyme-catalyzed reactions: 1. For a given initial concentration of substrate, [S] 0, the initial rate of product.
Enzyme Kinetics vo=vo= V max [S] K m + [S] KmKm V max & E1 E2 E3 1st order zero order CompetitiveNon-competitive Uncompetitive Direct plot Double reciprocal.
KAPITOLA 3 Enzymová katalýza I katylytická aktivita enzymů katylytická aktivita enzymů interakce enzym - substrát interakce enzym - substrát koenzymy koenzymy.
Kinetics of Enzyme Reactions Srbová Martina. E + S ES E + P k1k1 k -1 k cat rapid reversible reaction slow irreversible reaction Rate of the conversion.
Enzymes II: Enzyme Kinetics
SURVEY OF BIOCHEMISTRY Enzyme Kinetics and Inhibition
CHMI 2227E Biochemistry I Enzymes: Kinetics
Quiz #3 Define Enzyme Classes Systematic naming –Given a reaction (including names) –Use subclass designation if appropriate Catalytic mechanisms –Define.
Why study enzyme kinetics?  To quantitate enzyme characteristics  define substrate and inhibitor affinities  define maximum catalytic rates  Describe.
Picture of an enzymatic reaction. Velocity =  P/  t or -  S/  t Product Time.
LECTURE 4: Principles of Enzyme Catalysis Reading: Berg, Tymoczko & Stryer: Chapter 8 ENZYME An ENZYME is a biomolecular catalyst that accelerates the.
Paul D. Adams University of Arkansas Mary K. Campbell Shawn O. Farrell Chapter Six The Behavior of Proteins:
ENZYME KINETICS. catalyzed uncatalyzed Formation of product is faster in the catalyzed reaction than in the uncatalyzed reaction and initially is linear.
Prof. R. Shanthini 23 Sept 2011 Enzyme kinetics and associated reactor design: Determination of the kinetic parameters of enzyme-induced reactions CP504.
Enzyme Inhibition C483 Spring Questions 1. An inhibitor binds to a site other than the active site of the enzyme. Which statement below correlates.
Enzyme Catalysis SBS017 Basic Biochemistry Dr John Puddefoot
Lecture – 4 The Kinetics of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam School of Bioprocess Engineering University Malaysia Perlis
Enzyme Kinetics Chapter 6. Kinetics Study of rxn rates, changes with changes in experimental conditions Simplest rxn: S  P –Rate meas’d by V = velocity.
E + S ES P + E k2k2 v o = k 2 (ES) Michaelis reasoned that If k 2 is the smallest rate constant, the overall velocity of the reaction is Problem: We cannot.
Enzyme Kinetics.
Michaelis-Menten kinetics
Fundamentals of Biochemistry
Enzyme Kinetics Velocity (V) = k [S]
23.5 Features of homogeneous catalysis A Catalyst is a substance that accelerates a reaction but undergoes no net chemical change. Enzymes are biological.
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
Rmax and Km (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Indicate if enzyme.
R max and K m (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Constants – Indicate.
Enzyme Inhibition (26.4) Inhibition is a term used to describe the inability of a product being formed due to the presence of another substance (the inhibitor)
Mechanisms of enzyme inhibition
Biochemical Reaction Rate: Enzyme Kinetics What affect do enzymes and enzyme inhibitors have on enzyme catalysis on a quantitative level? Lipitor inhibits.
KAPITOLA 3 Enzymová katalýza I katylytická aktivita enzymů katylytická aktivita enzymů interakce enzym - substrát interakce enzym - substrát koenzymy koenzymy.
Biochemistry 412 Enzyme Kinetics II April 1st, 2005.
Lecture 5:Enzymes Ahmad Razali Ishak
Interpretation of Michaelis Menten Equation. Michaelis-Menten  Graphically representation:
Enzymes.
Enzyme Kinetics II 10/16/2008.
Bioreactors Engineering
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chapter Three: Enzymes
Chapter Three: Enzymes
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Presentation transcript:

Lecture 15 Tuesday 3/4/08 Enzymes Michealis-Menten Kinetics Lineweaver-Burk Plot Enzyme Inhibition

Last time 2/21/08

V max =k cat * E t Turnover Number: k cat Number of substrate molecules (moles) converted to product in a given time (s) on a single enzyme molecule (molecules/molecule/time) H 2 O 2 + E  H 2 O + O + E 40,000,000 molecules of H 2 O 2 converted to product per second on a single enzyme molecule.

Enzymes, Inhibition S + E → E + P 1) Mechanism and active intermediate (E·S) 2) Rates 3) Net Rates

4) Pseudo Steady-State

(Michaelis-Menten plot) V max -r s S 1/2 k m =S 1/2 therefore k m is the concentration at which the rate is half the maximum rate

Competitive Inhibition E + S E·S E + P + I E · I 1)Mechanisms 2)Rates k1k1 k2k2 k3k3 k4k4 k5k5

From before (no competition): Intercept does not change, slope increases as inhibitor concentration increases No competition Competition

Uncompetitive Inhibition E + S E·S P E · S· I I k1k1 k2k2 k3k3 k4k4 k5k5