On the velocity structure in clumpy planetary nebulae Café de grano o soluble: Micro-estructuras en nebulosas planetarias Wolfgang Steffen Alberto López.

Slides:



Advertisements
Similar presentations
Motion and Force A. Motion 1. Motion is a change in position
Advertisements

Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Massive YSOs and the transition to UCHIIs.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Universal Wave Equation
Tom Hartquist University of Leeds
Diffusive shock acceleration & magnetic field amplification Tony Bell University of Oxford Rutherford Appleton Laboratory SN1006: A supernova remnant 7,000.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Ammonia and CCS as diagnostic tools of low-mass protostars Ammonia and CCS as diagnostic tools of low-mass protostars Itziar de Gregorio-Monsalvo (ESO.
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
Inflating Fat Bubbles in Clusters of Galaxies by Slow Wide Jets Assaf Sternberg (did the work) Noam Soker (speaker today) Technion, Israel July 2008.
Injection of Small Bodies into the ISM by Planetary Nebulae. Bob O’Dell University of Chicago 18 April 2007.
The Narrow-Line Region and Ionization Cone Lei Xu.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Hybrid simulations of parallel and oblique electromagnetic alpha/proton instabilities in the solar wind Q. M. Lu School of Earth and Space Science, Univ.
Hen : The Garden Sprinkler Nebula Angels Riera Universitat Politècnica de Catalunya.
MHD Simulations of Line-Driven Winds from Hot Stars Asif ud-Doula & Stan Owocki Bartol Research Institute, University of Delaware, Newark, DE Hot-Star.
Numerical Simulations of FRI jets Manel Perucho Pla Max-Planck-Institut für Radioastronomie and J.M. Martí (Universitat de València)
Distances to PNe using angular expansion parallax Lizette Guzman-Ramirez (JBCA, University of Manchester) Yolanda Gomez and Laurent Loinard (CRyA, UNAM,
Globules in Planetary Nebulae Review of some recent advances on the nature and origin of globules P. J. Huggins (NYU)
Interacting Winds: Theory Overview Stan Owocki Bartol Research Institute University of Delaware with thanks for web slides from: D. Folini, K. Gayley,
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Resonance scattering in the X-ray emission line profiles of  Pup Maurice Leutenegger With David Cohen, Steve Kahn, Stan Owocki, and Frits Paerels.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Diagnostics of the origin of X- ray emission in Cygnus Loop Xin Zhou, INAF – Osservatorio Astronomico di Palermo, Italy & Nanjing University, ChinaCollaborators:
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
Molecular clouds and gamma rays
Formation of the First Stars
Observations vs Theory JETS AND TORI IN PROTO-PNE Patrick Huggins New York University.
The planetary nebula M2-9: Balmer line profiles of the nuclear region Silvia Torres-Peimbert 1 Anabel Arrieta 2 Leonid Georgiev 1 1 Instituto de Astronomía,
Galaxy Evolution in the Virgo Cluster Bernd Vollmer CDS, Observatoire de Strasbourg, France In collaboration with: P. Amram, C. Balkowski, R. Beck, A.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
Cynthia López-Portela and Xochitl Blanco-Cano Instituto de Geofísica, UNAM A brief introduction: Magnetic Clouds’ characteristics The study: Event types.
GH2005 Gas Dynamics in Clusters III Craig Sarazin Dept. of Astronomy University of Virginia A85 Chandra (X-ray) Cluster Merger Simulation.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
Large Scale CO Emission in the Orion Nebula Núria Marcelino (NRAO-CV) Olivier Berné (Leiden Obs, The Netherlands) José Cernicharo (CSIC/INTA, Spain) HST.
Energetic electrons acceleration: combined radio and X-ray diagnostics
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Colliding winds in pulsar binaries S.V.Bogovalov 1, A.V.Koldoba 2,G.V.Ustugova 2, D. Khangulyan 3, F.Aharonian 3 1-National Nuclear Research University.
Philamentary Structure and Velocity Gradients in the Orion A Cloud
Hydrodynamical Interpretation of Basic Nebular Structures
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
ANGULAR EXPANSION IN PLANETARY NEBULAE FROM RADIO INTERFEROMETRIC DATA Yolanda Gómez Centro de Radioastronomía y Astrofísica, UNAM México.
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
Studies of Molecular Outflows Hsin-Lun Kuo Department of Physics,NTU Supervisor:Hsien Shang 2002 Summer Students Presentation, ASIAA.
AGN Outflows: Part II Outflow Generation Mechanisms: Models and Observations Leah Simon May 4, 2006.
Relativistic Jets: Krakow June The Interaction of Jets with the Interstellar Medium of Radio Galaxies Geoff Bicknell, Ralph Sutherland, Vicky.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Speed, Velocity & Acceleration. Speed (s) – rate at which an object is moving Does not depend on direction speed = distance ÷ time (s = d/t) Constant.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
08/4/2009NAS - SHINE-Suprathermal Radial Evolution (1-11 AU) of Pickup Ions and Suprathermal Ions in the Heliosphere N. A. Schwadron Boston University,
Extended X-ray object ejected from the PSR B /LS 2883 binary Jeremy Hare (George Washington University) Oleg Kargaltsev (George Washington University)
Brigthest Cluster Galaxies Unique class of objects  most luminous  most massive  extended source  some BCG shows multiple nuclei → galaxy merger →
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Lecture 10: Bubbles and PNe September 26, III. Conduction Layer - Probe the thermal conduction layer High ions produced by thermal collisions O.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Lab: Linear Motion Experimental Procedure:
1 Instituto Argentino de Radioastronomía, Argentina 2 Facultad de Ciencias Astronómicas y Geofísicas, UNLP, La Plata, Argentina 3 Departamento de Astronomía,
Ilian T. Iliev Canadian Institute for Theoretical Astrophysics/University of Zurich with Garrelt Mellema (Stockholm), Jane Arthur, Will Henney (UNAM, Morelia),
Radiative transfer in galactic disks…
Infrared integral field spectroscopic observations of globules (cometary knots) in the Helix Nebula (NGC 7293) Mikako Matsuura National Astronomical Observatory.
♠ ♠ ♠ ♠ ♠ ♠ ♠ ♠ Objectives القرص الدوار والدولاب مجلس أبوظبي للتعليم
Modelling of non-thermal radiation from pulsar wind nebulae
Packet #7 Applications: Rates of Change
Presentation transcript:

On the velocity structure in clumpy planetary nebulae Café de grano o soluble: Micro-estructuras en nebulosas planetarias Wolfgang Steffen Alberto López Instituto de Astronomía UNAM, Ensenada MyPN 5

Observations: Velocities of clumps up to > 500 km/s Linear velocity gradients for clumps and jets at large distances from the CS High speed tails up to ~ 200 km/s Theory: Magnetic “jets” (García-Segura 1999) & Stagnation knots (Steffen, W. 2001) show linear v-gradients This paper: Quasi-spherical clump distribution from instabilities and clumpy AGB-remnant overrun by fast post AGB-wind NGC 2440

Abell 30 Borkowski et al Chu et al (X-Ray) Borkowski et al. 1995

Images and velocities of fast head-tail structures Abell 78 Meaburn et al. 1998

Images and velocities of very fast symmetric FLIERs MyCn18, O’Connor, Meaburn et al.

García-Segura et al. 1999

Steffen, W., et al Stagnation knots

Steffen & López in prep. Fast stellar wind in 1 / r^2 environment (AGB-wind) Dynamical instabilities conv. shocks Thermal instabilities shock before cooling

Clumps due to dynamical and thermal instabilities Distance [units 1e15 cm] Velocity [cm/s]

Steffen & López, in prep. Fast stellar wind and pre-existing clumps log number density

density distribution Shock acceleration of clouds Speed of cloud after shock wind ambient medium

Steffen & López, in prep. Simplified equation of motion Continuous wind acceleration of clouds Terminal velocity not equal local wind velocity v c = F ( v i,  r, v co, r o ) Clump velocity v c_inf = G ( v i,  v co, r o ) For large times evolution becomes self-similar.

Velocity vs. distance evolution for 2 different clump densities Low density High density

Velocity vs. distance for different densities of clouds for fixed time self-similar (low density) not self-similar (high density)

Velocity vs. distance scatter plot pre-existing clouds distance [cells] Velocity 200 km/s 1000 km/s high density low density colour is log density

Velocity vs. distance scatter plot pre-existing clouds distance [cells] Velocity [cm/s] model low density tails (not modeled) colour is log density

Velocity vs. Density scatter plot log density [1/ccm] Velocity 200 km/s 1000 km/s pre-existing clouds instability clouds

Velocity spikes from tails of dense clumps Distance [units 1e15 cm] Velocity [cm/s]

MyPN 3 Conclusions: Velocity stratification with density Initial shocked clump velocity ~ 1/r Linear velocity gradient for large r Multi-valued velocities at small r and high densities Velocity structure from instability clumps & pre-existing clumps is very different More velocity and density diagnostics needed

MyPN 5

Preexisting clumps and due to thermal instabilities Distance [units 1e15 cm] Velocity [cm/s]