White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.

Slides:



Advertisements
Similar presentations
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Spatial and temporal relationships between UV continuum and hard x-ray emissions in solar flares Aaron J. Coyner and David Alexander Rice University June.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-ray Production in a Failed Filament Eruption David, Alexander, Rui Liu and Holly R., Gilbert 2006 ApJ 653, L719 Related Paper: Ji. H. et al., 2003.
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
Imaging with subcollimator 1. Dec 6, 2006 white light flare Hinode/SOT image during the main HXR peak! SOT resolution.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf & J. Wolfson (LMSAL), L. Fletcher & J. Khan (Glasgow)
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
Solar and Stellar Flares Hugh S. Hudson SSL, UC Berkeley 1 May
The optical and UV continuum in the impulsive phase H. S. Hudson Space Sciences Laboratory, University of California, Berkeley, USA.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
EVE non-detection of Doppler-shifted He II 304 Å H.S. Hudson 1,2, L. Fletcher 2, A. MacKinnon 2, and T. Woods 3 1 SSL, UC Berkeley, 2 University of Glasgow,
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Chromospheric flares in the modern era H. Hudson Space Sciences Lab, UC Berkeley.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Coronal HXR sources a multi-wavelength perspective.
Remarkable Low Temperature Emission of the 4 November 2003 Limb Flare J. Leibacher, J. Harvey, GONG Team (NSO), G. Kopp (CU/LASP), H. Hudson (UCB/SSL)
Transients in RHESSI and Chromospheric flares H. Hudson Space Sciences Lab, UC Berkeley.
SPD May 25, 2005 RHESSI soft X-ray imaging spectroscopy H. Hudson & A. Caspi (SSL/UCB) And B. Dennis & K. Phillips (NASA/GSFC.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
White-Light Flares and HESSI Prospects H. S. Hudson (UCB and SPRC) March 8, 2002.
The hard X-ray spectral structure of flare ribbons H. Hudson, L. Fletcher, S. Krucker, J. Pollock.
Xu et al., ApJ 607, L131, 2004: or, how do flare footpoints work? First flare observations in the infrared 1.56  nominally is as deep as deep can be (the.
The Yohkoh observations of solar flares Hugh Hudson UCB.
Coronal Hard X-rays Come of Age H. S. Hudson SSL, UC Berkeley.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf, J. Wolfson (LMSAL), L. Fletcher & J.I. Khan (Glasgow)
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
EUV vs. B-field Comparisons Yingna Su Smithsonian Astrophysical Observatory Coauthours: Leon Golub, Aad Van Ballegooijen, Maurice Gros. HMI/AIA Science.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Footpoint behavior Hugh Hudson UCB Galileo science meeting Nobeyama, July 12, 2002.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
High-Energy Emission from a Solar Flare in Hard X-Rays and Microwaves M R Kundu 1, V V Grechnev 2, S M White 1, E J Schmahl 1, N S Meshalkina 2, L K Kashapova.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
H α and hard X-ray observations of solar white-light flares M. D. Ding Department of Astronomy, Nanjing University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Scientific Interests in OVSA Expanded Array Haimin Wang.
2. Data3. Results full disk image (H  ) of the flare (Sartorius Telescope) NOAA Abstract Preflare Nonthermal Emission Observed in Microwave and.
CME/Flare energetics and RHESSI observations H.S. Hudson SSL/UCB.
Flare footpoints in optical and UV Lyndsay Fletcher University of Glasgow RHESSI 10, August 4 th 2010, Annapolis TRACE WL ~2s time cadence, 0.5” pixel.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
CME – Flare Relationship A survey combining STEREO and RHESSI observations S. Berkebile-Stoiser B. Bein A.Veronig M. Temmer.
Physics of Solar Flares
Marina Battaglia, FHNW Säm Krucker, FHNW/UC Berkeley
RHESSI and H study of the X4 Flare of 3 Nov 2003
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Downflow as a Reconnection Outflow
Presentation transcript:

White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J. Wolfson

White-Light Flares (WLF) “White light” is formed deep in the solar atmosphere and is therefore energetically important (also note “white-light prominences,” which are up in the corona) White-light (and UV) continuum emission associates well with the hard X-ray impulsive phase (Neidig) There are some WLF observations from space prior to TRACE (Yohkoh; Matthews et al., 2003), but TRACE and RHESSI give us much better data

Wolfson sample TRACE catalog => events with <10 s cadence in white light and full resolution, GOES C and above, full RHESSI coverage Total event list consists of 33 events during RHESSI operations through events (X: 0; M: 7; C: 4) All 11 events have TRACE WL response All 11 events have RHESSI hard X-ray response 10/11 events appear to be largely footpoints; one has obvious coronal sources as well

13:40 PST Jan. 18 TRACE spectral response: “WL” & 1700 ratio Solar-cycle modulation (Lean, 1997)

13:40 PST Jan Oct. 4 05:35:49 UT 2002 Oct. 5 10:41:58 UT

13:40 PST Jan. 18 Intermittency 32 x 68 arc s frames

13:40 PST Jan. 18 WL-hard X-ray comparison

13:40 PST Jan. 18 RHESSI/TRACE/MDI overlay

13:40 PST Jan. 18 RHESSI/TRACE/MDI overlay, illustrating MDI roll problem

13:40 PST Jan. 18

Conclusions WL emission, as seen by TRACE, is not resolved at angular resolution 1”, temporal resolution 10 s The data confirm a strong association with hard X-rays Sources may be extended in area and include loop tops “True” WL is morphologically different from UV TRACE WL contrasts can exceed 100% even for flares below X class

13:40 PST Jan. 18 Next steps WLF/HXR morphology: how good is the match? Energetics: what can we learn about HXR cutoff energy? Theory: how can such intense energy release be reconciled with coronal particle acceleration?

13:40 PST Jan. 18 Miscellaneous other related slides

TRACE The TRACE white light channel has significant contributions from 1700 Å to 1  m, 0.5” pixels UV contributions to the white light channel can be reduced by subtracting the TRACE 1700 channel RHESSI Energy range 3 keV - 15 MeV, resolution (FWHM) ~ 1 keV Time resolution 4 sec without image deconvolution

13:40 PST Jan Jan. 9 01:40:17 UT 2003 June 12 01:27:01 UT

13:40 PST Jan Nov. 2 18:16:04 UT 2004 July 22 00:29:56 UT

13:40 PST Jan Oct :39:49 UT 2002 July 25 03:59:04 UT

13:40 PST Jan July 26 19:00:25 UT 2004 July 24 13:34:38 UT

13:40 PST Jan. 18 Loop-top WL emission (“WL prominence”) Event of 2002 Nov. 12, 17:58 UT

13:40 PST Jan. 18 Statistical Properties of fixed differences

13:40 PST Jan. 18

WL versus UV (1700A) TRACE WLWL difference1700 A

13:40 PST Jan. 18 WL-1700A Comparison Reversed colors!