Quantifiers and Negation Predicates
Predicate Will define function. The domain of a function is the set from which possible values may be chosen for the argument of the function. A predicate is a function whose possible values are True and False.
Universal Quantifier The universal quantifier. Upside down A. “For All”
Universal Quantifier Let P(x) be a predicate with domain D. A universal statement is a statement in the form “ x, P(x)”. It is true iff P(x) is true for all x in D. It is false iff P(x) is false for at least one x in D. A value of x which shows that P(x) is false is called a counterexample to the universal statement.
Universal Quantifier Examples Let D = {1, 2, 3, 4, 5}. x, x² >= x Let D=Reals. x Reals, x² >= x Let D= Natural numbers. Let P(x)=x is prime, E(x)=x is even. x E(x) x P(x) x (E(x) V E(x+1))
Existential Quantifier Existential quantifier. Backwards E. There Exists
Existential Quantifier Let P(x) be a predicate with domain D. An existential statement is a statement in the form “ x, P(x)”. It is true iff P(x) is true for at least one x in D. It is false iff P(x) is false for all x in D. Examples: D=Integers, m, m² = m D = {5, 6, 7, 8, 9}, m, m² = m
Universal Conditional Statement Universal conditional statement x, (P(x) Q(x)) Example: D=Reals. x, (x > 2 x 2 > 4) A universal conditional statement is vacuously true or true by default iff P(x) is false for every x in D. i.e. ~ x D, P(x) iff x D (P(x) Q(x)) is vacuously true.
Universal Conditional Statement Examples: D=Natural numbers. E(x)=x is even. P(x)=x is prime x (E(x) ~E(x+1)) x ((E(x) Λ x > 2) ~P(x)) x (P(x) ~E(x))
Negation of Quantified Statements ~ ( x D, P(x)) ≡ x D, ~P(x) ~( x D, P(x)) ≡ x D, ~P(x) ~ x D, P(x) Q(x) ≡ x D, ~(P(x) Q(x)) ≡ x D, P(x) ~Q(x)
Multiply Quantified Statements Let the D=Integers. Let P(x, y) = y<x. There exists a number x, there exists a number y, such that y<x x, y, P(x, y) ≡ y, x, P(x, y) True (both True) For all numbers x, for all numbers y, y < x x, y, P(x, y) ≡ y, x, P(x, y) True (both False)
Multiply Quantified Statements For all numbers x, there exists a number y such that x < y x, y, P(x, y) True There exists a number y such that for all numbers x, x < y y, x, P(x, y) False x, y, P(x, y) ≡ y, x, P(x, y) False
Negation of Multiply Quantified Statements ~ x, y, P(x, y) ≡ x, y, ~P(x, y) ~ x, y, P(x, y) ≡ x, y,~P(x, y) ~ x, y, P(x, y) ≡ x, y, ~P(x, y) ~ x, y, P(x, y) ≡ x, y, ~P(x, y)
Example a) Symbolize: The sum of any two even integers is even. b) Negate it.
Example Solution Let E(x)=“x is even”. Let E(x, y)=“x+y is even”. Let the domain be the Integers. a) x, y, E(x)^E(y) E(x, y) b) x, y, E(x) ^ E(y) ^ ~E(x, y)
Which of the following is true? x D, (P(x) Q(x)) ≡ ( x D, P(x)) ( x D, Q(x)) x D, (P(x) Q(x)) ≡ ( x D, P(x)) ( x D, Q(x)) x D, (P(x) Q(x)) ≡ ( x D, P(x)) ( x D, Q(x)) x D, (P(x) Q(x)) ≡ ( x D, P(x)) ( x D, Q(x))
, , Λ, ν Let P(x) be a predicate. Let D={x 1, x 2, …, x n } be the domain of x. x D, P(x)≡P(x 1 ) Λ P(x 2 ) Λ…Λ P(x n ) x D, P(x) ≡P(x 1 ) ν P(x 2 ) ν…ν P(x n )