234262 Tutorial #6 Controller + DataPath part II 234262 – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.

Slides:



Advertisements
Similar presentations
Intro: Intro: We already know the standard form of a quadratic equation is: y = ax2 ax2 ax2 ax2 + bx bx + c The The constants constants are: a, b, c The.
Advertisements

All about Muhammad Al-Khwarizmi A Presentation about Muhammad Al-Khwarizmi by Helen Zhao.
– © Yohai Devir 2007 Technion - IIT Tutorial #10 MIPS commands.
Lecture 8 From NFA to Regular Language. Induction on k= # of states other than initial and final states K=0 a a* b a c d c*a(d+bc*a)*
AB 11 22 33 44 55 66 77 88 99 10  20  19  18  17  16  15  14  13  12  11  21  22  23  24  25  26  27  28.
Register Cell Design.
Fundamentals of Software Development 1Slide 1 Muhammad ibn Musa al-Khwarizmi Muhammad ibn Musa al-Khwarizmi (approx CE)Muhammad ibn Musa al-Khwarizmi.
Introduction Digital systems (logic design, digital logic, switching circuits) are employed in: computers data communication control systems many other.
שאלת חזרה בקר ומסלול נתונים – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.
Tutorial #10 MIPS commands – © Yohai Devir 2007 Technion - IIT.
CS 151 Digital Systems Design Lecture 15 Magnitude Comparators and Multiplexers.
Tutorial #13 Solving MIPS Exam Problems 20: © Dima Elenbogen 2010, Technion 1.
שערים לוגיים – © Dima Elenbogen Wired AND – © Dima Elenbogen 2009.
Tutorial #7 Preventing combinatorial loops – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.
Chapter II. THE INTEGERS
Microprogramming Andreas Klappenecker CPSC321 Computer Architecture.
משטר דינמי – © Dima Elenbogen :00. הגדרת cd ו -pd cd - הזמן שעובר בין הרגע שראשון אותות הכניסה יוצא מתחום לוגי עד אשר אות המוצא יוצא מתחום.
שערים לוגיים – © Dima Elenbogen Wired AND – © Dima Elenbogen 2009.
30 September 2004Comp 120 Fall September 2004 Chapter 4 – Logic Gates Read in Chapter 4 pages , , section 4.8 through top of page.
Tutorial #6 Controller + DataPath part II – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.
Give qualifications of instructors: DAP
Tutorial #7 Preventing combinatorial loops – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.
Lecture 1: Introduction to Digital Logic Design CK Cheng Thursday 9/26/02.
שערים לוגיים – © Dima Elenbogen Wired AND – © Dima Elenbogen 2009.
Tutorial #13 Solving MIPS Exam Problems 01: © Dima Elenbogen 2010, Technion 1.
– © Yohai Devir 2007 Technion - IIT Tutorial #6 Controller + DataPath part II.
Tutorials #4-#5 Controller + DataPath design – © Yohai Devir 2007 Technion - IIT.
משטר דינמי – © Dima Elenbogen :14. הגדרת cd ו -pd cd - הזמן שעובר בין הרגע שראשון אותות הכניסה יוצא מתחום לוגי עד אשר אות המוצא יוצא מתחום.
– © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT Tutorial #7 Preventing combinatorial loops.
ECE 331 – Digital Systems Design Introduction to Sequential Logic Circuits (aka. Finite State Machines) and FSM Analysis (Lecture #19)
שאלה 9 – בקר ומסלול - נתונים נתונה המערכת הבאה של בקר ומסלול נתונים. כל הקווים העבים בשרטוט ה DP הם ברוחב n. ה -ADDER מחבר מודולו n 2. COMPARE הוא רכיב.
The Multicycle Processor CPSC 321 Andreas Klappenecker.
Tutorial #6 Controller + DataPath part II – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT.
Chapter 6 Memory and Programmable Logic Devices
By Samuel Barnard. Full name: Mu ḥ ammad ibn Mūsā al-Khwārizmī Date of birth (not exact): 780AD-850AD Nationality: Persian Worked in: The House of Wisdom.
By Dalia Javiel. A number that can be divided without remainder by at least one positive number other than itself and 1. Any number that is not prime.
Gamze YILDIZ * Al-Khwarazmi’s Life * Al-Khwarazmi’s Contributions  Algebra  Arithmetic  Astronomy  Geography  Other works Al-Khwarazmi’s.
All you need to know about Al-Khwarizmi! MADE BY LIBBY.
An amazing Islamic Mathmatition. Muhammad ibn Musa Al-Khwarizmi was a citizen of the Ancient Islamic Civilization. He was born in Persia in around 780AD.
Archimedes Created by Austyn berga. Archimedes life and death He was born 212 B.c and died 287 B.c Archimedes had became a master at mathematics, especially.
Abdullah Said Alkalbani University of Buraimi
BY: NASIRA ATEEQ FROM:D A PUBLIC SCHOOL (O & A LEVELS)
DLD Lecture 26 Finite State Machine Design Procedure.
CBP 2006Comp 4070 Concepts and Philosophy of Computing 1 Wrestling with Complex Stuff. With the Correct Approach, even the smallest guy will succeed!
1 2-Hardware Design Basics of Embedded Processors.
Eculid By: Kaitlin Johnson.
Modern VLSI Design 3e: Chapter 8 Copyright  1998, 2002 Prentice Hall PTR Topics n Basics of register-transfer design: –data paths and controllers; –ASM.
1  1998 Morgan Kaufmann Publishers Simple Implementation Include the functional units we need for each instruction Why do we need this stuff?
System-on-Chip Design Analysis of Control Data Flow
Euclidean Algorithm By: Ryan Winders. A Little on Euclid Lived from 323 – 285 BC Lived from 323 – 285 BC He taught in Alexandria, Egypt He taught in Alexandria,
George Mason University Finite State Machines Refresher ECE 545 Lecture 11.
Combinational Circuits and Boolean
© Copyright 2004, Gaetano Borriello and Randy H. Katz
Islamic Empire Map Activity
Carry Look Ahead (CLA).
Solving MIPS Exam Problems
Lecture 3 CPU - Data Path for Branches
Tutorial #10 MIPS commands
תרגול 6 בקר ומסלול נתונים חלק שני
The Golden Age of the Muslim Civilization
One-Hot Seq. Circuit Delay
תרגול 6 בקר ומסלול נתונים חלק שני
Simple Implementation
Special Gates Combinational Logic Gates
Controllers and Datapaths
Algorithm: Word comes from Arabic Author Abū ‘Abdallāh Muḥammad ibn Mūsā al-Khwārizmī Algorism Algebra: Kitab al-Mukhtasar fi Hisab al-Jabr wal-Muqabala.
1. Evaluating Expressions and Functions
Tutorials #4-#5 Coltroller + dataPath design
CS161 – Design and Architecture of Computer Systems
Arithmatic Logic Unit (ALU). ALU Input Data :  A0-A3  B0-B3 Output Data :  F0 – F3.
Presentation transcript:

Tutorial #6 Controller + DataPath part II – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

GCD (Euclid's algorithm) – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Euclid Al- Khwārizmī Ευκλείδης από την Αλεξάνδρεια Born: c. 325 BC Birthplace: Alexandria, Egypt Died: c. 265 BC Location of death: Alexandria, Egypt Nationality: Ancient GreekAlexandria, Egypt Muhammad ibn Mūsā al-Khwārizmī Born: c. 787 AC Birthplace: Khwārizm, Persia Died: c. 850 AC Location of death: Baghdad, Arab. Caliphate Nationality: PersianKhwārizm, PersiaBaghdad, Arab. Caliphate – © Dima Elenbogen 2009 Technion - IIT

ALU a is given at the first cycle and that b is given at the following cycle ALUOp CC AB – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Other hardware – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

DP construction Variables… Operations… – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Switch implementation LdA AB ALUOp CC In SelB LdB SelA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

AB ALUOp CC In SelB LdB SelA0101 Implementation – just as in tutorial 4… LdA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

GCD – slower ALU AB ALUOp CC ALU In SelB LdB SelA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT נניח: T cycle < T pd (ALU) ≤ 2 · T cycle

GCD – slower ALU – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT T cycle < T pd (ALU) ≤ 2 · T cycle

GCD – slower ALU – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT T cycle < T pd (ALU) ≤ 2 · T cycle

GCD – slower ALU ? – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT T cycle < T pd (ALU) ≤ 2 · T cycle

– © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT GCD – slower ALU

AB ALUOp CC ALU In SelB LdB SelA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

GCD – slower ALU AB ALUOp CC ALU In SelB LdB SelA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

GCD – slower ALU AB ALUOp CC ALU In SelB LdB SelA01 01 CC '0' ReadCC – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

AB ALUOp CC ALU In SelB LdB SelA – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

ALUop אות הסטטוס – © Dima Elenbogen 2009 Technion - IIT

ALUop אות הסטטוס – © Dima Elenbogen 2009 Technion - IIT

AB ALUOp CC ALU In SelB LdB SelA01 01 CC '0' ReadCC 1 0 ALU op Output comb. logics Transition comb. logics – © Dima Elenbogen 2009 Technion - IIT

ספחת סטטית FF של ALU OP חייב להיות חסר ספחת סטטית!  ספחת סטטית היא תופעה שבה יחידה יכולה לשנות את המוצא שלה כאשר הכניסות שלה לא השתנו – © Dima Elenbogen 2009 Technion - IIT

– © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

DP mealy (regular ALU) – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Controller Mealy – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Controller Mealy – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT ?

Standard Mealy Notation – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

selA=0 selB=0 if (CC==pos) ldA, OP=A-B if (CC==neg) ldB, OP=B-A CC=pos CC=neg ? – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

ALU OP depends on CC ALU ! AB ALUOp CC ALU In SelB LdB SelA01 01 Combinatorial Logics NS CS LdA – © Dima Elenbogen 2009 Technion - IIT selA=0 selB=0 if (CC==pos) ldA, OP=A-B if (CC==neg) ldB, OP=B-A CC=posCC=neg

ALU OP depends on CC ALU ! AB ALUOp CC ALU In SelB LdB SelA01 01 Comb. Logics NS CS LdA – © Dima Elenbogen 2009 Technion - IIT selA=0 selB=0 if (CC==pos) ldA, OP=A-B if (CC==neg) ldB, OP=B-A CC=posCC=neg

Mistake by standard notations – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT

Mealy Controller – © Yohai Devir 2007 © Dima Elenbogen 2009 Technion - IIT