UCb Kim G. Larsen Arne Skou & Peter Koch Anders Brødløs Henrik Schiøler Dynamic Voltage Scaling using Optimal Infinite Scheduling work in progress POTENTIAL.

Slides:



Advertisements
Similar presentations
Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling Yifan Zhu and Frank Mueller Department of Computer Science Center for Embedded Systems Research.
Advertisements

Pinwheel Scheduling for Power-Aware Real-Time Systems Gaurav Chitroda Komal Kasat Nalini Kumar.
Energy-efficient Task Scheduling in Heterogeneous Environment 2013/10/25.
1 EE5900 Advanced Embedded System For Smart Infrastructure Energy Efficient Scheduling.
1 EE5900 Advanced Embedded System For Smart Infrastructure RMS and EDF Scheduling.
1 “Scheduling with Dynamic Voltage/Speed Adjustment Using Slack Reclamation In Multi-processor Real-Time Systems” Dakai Zhu, Rami Melhem, and Bruce Childers.
B. RAMAMURTHY 4/13/2015 cse321-fall2014 Realtime System Fundamentals : Scheduling and Priority-based scheduling Pag e 1.
CS5270 Lecture 31 Uppaal, and Scheduling, and Resource Access Protocols CS 5270 Lecture 3.
CPE555A: Real-Time Embedded Systems
Real- time Dynamic Voltage Scaling for Low- Power Embedded Operating Systems Written by P. Pillai and K.G. Shin Presented by Gaurav Saxena CSE 666 – Real.
Slide 7-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 7 7 Scheduling.
Minimizing Expected Energy Consumption in Real-Time Systems through Dynamic Voltage Scaling Ruibin Xu, Daniel Mosse’, and Rami Melhem.
Tasks Periodic The period is the amount of time between each iteration of a regularly repeated task Time driven The task is automatically activated by.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
Chapter 3: CPU Scheduling
Operating Systems 1 K. Salah Module 2.1: CPU Scheduling Scheduling Types Scheduling Criteria Scheduling Algorithms Performance Evaluation.
Preemptive Behavior Analysis and Improvement of Priority Scheduling Algorithms Xiaoying Wang Northeastern University China.
Investigating the Effect of Voltage- Switching on Low-Energy Task Scheduling in Hard Real-Time Systems Paper review Presented by Chung-Fu Kao.
System-Wide Energy Minimization for Real-Time Tasks: Lower Bound and Approximation Xiliang Zhong and Cheng-Zhong Xu Dept. of Electrical & Computer Engg.
Chapter 5: CPU Scheduling
Wk 2 – Scheduling 1 CS502 Spring 2006 Scheduling The art and science of allocating the CPU and other resources to processes.
Scheduling. Model of Process Execution Ready List Ready List Scheduler CPU Resource Manager Resource Manager Resources Preemption or voluntary yield AllocateRequest.
1Chapter 05, Fall 2008 CPU Scheduling The CPU scheduler (sometimes called the dispatcher or short-term scheduler): Selects a process from the ready queue.
CS 423 – Operating Systems Design Lecture 22 – Power Management Klara Nahrstedt and Raoul Rivas Spring 2013 CS Spring 2013.
Power-Aware SoC Test Optimization through Dynamic Voltage and Frequency Scaling Vijay Sheshadri, Vishwani D. Agrawal, Prathima Agrawal Dept. of Electrical.
Reducing Noise and System Costs by Managing Switching Power Supplies as Real-Time Processes Subash Sachidananda & Dr. Alex Dean Dept. of ECE - NC State.
Slide 7-1 Copyright © 2004 Pearson Education, Inc. Operating Systems: A Modern Perspective, Chapter 7.
VOLTAGE SCHEDULING HEURISTIC for REAL-TIME TASK GRAPHS D. Roychowdhury, I. Koren, C. M. Krishna University of Massachusetts, Amherst Y.-H. Lee Arizona.
Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat Mälardalen Real-time Research Center, Mälardalen University Västerås, Sweden Preemption Control.
Chapter 6: CPU Scheduling
Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-3 CPU Scheduling Department of Computer Science and Software Engineering.
CPU Scheduling Introduction to Operating Systems: Module 13.
More Scheduling cs550 Operating Systems David Monismith.
Computer Science Department University of Pittsburgh 1 Evaluating a DVS Scheme for Real-Time Embedded Systems Ruibin Xu, Daniel Mossé and Rami Melhem.
1 EE5900 Advanced Embedded System For Smart Infrastructure Energy Efficient Scheduling.
Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat.
Real-Time Scheduling CS4730 Fall 2010 Dr. José M. Garrido Department of Computer Science and Information Systems Kennesaw State University.
Scheduling policies for real- time embedded systems.
Multiprocessor Real-time Scheduling Jing Ma 马靖. Classification Partitioned Scheduling In the partitioned approach, the tasks are statically partitioned.
1 CSE451 Scheduling Autumn 2002 Gary Kimura Lecture #6 October 11, 2002.
CPU Scheduling CSCI 444/544 Operating Systems Fall 2008.
Abhilash Thekkilakattil, Radu Dobrin, Sasikumar Punnekkat Mälardalen Real-time Research Center, Mälardalen University Västerås, Sweden Towards Preemption.
Real-Time Scheduling CS4730 Fall 2010 Dr. José M. Garrido Department of Computer Science and Information Systems Kennesaw State University.
Hard Real-Time Scheduling for Low- Energy Using Stochastic Data and DVS Processors Flavius Gruian Department of Computer Science, Lund University Box 118.
Lecture 7: Scheduling preemptive/non-preemptive scheduler CPU bursts
6. Application mapping 6.1 Problem definition
Operating Systems 1 K. Salah Module 2.2: CPU Scheduling Scheduling Types Scheduling Criteria Scheduling Algorithms Performance Evaluation.
RTOS task scheduling models
CprE 458/558: Real-Time Systems (G. Manimaran)1 CprE 458/558: Real-Time Systems RMS and EDF Schedulers.
Multimedia Computing and Networking Jan Reduced Energy Decoding of MPEG Streams Malena Mesarina, HP Labs/UCLA CS Dept Yoshio Turner, HP Labs.
CprE 458/558: Real-Time Systems (G. Manimaran)1 Energy Aware Real Time Systems - Scheduling algorithms Acknowledgement: G. Sudha Anil Kumar Real Time Computing.
Sandtids systemer 2.modul el. Henriks 1. forsøg m. Power Point.
Lecture Topics: 11/15 CPU scheduling: –Scheduling goals and algorithms.
CS333 Intro to Operating Systems Jonathan Walpole.
Determining Optimal Processor Speeds for Periodic Real-Time Tasks with Different Power Characteristics H. Aydın, R. Melhem, D. Mossé, P.M. Alvarez University.
Lecture 4 Page 1 CS 111 Summer 2013 Scheduling CS 111 Operating Systems Peter Reiher.
Lecture 6: Real-Time Scheduling
Reducing the Number of Preemptions in Real-Time Systems Scheduling by CPU Frequency Scaling Abhilash Thekkilakattil, Anju S Pillai, Radu Dobrin, Sasikumar.
CPU SCHEDULING.
Scheduling (Priority Based)
CprE 458/558: Real-Time Systems
Process Scheduling B.Ramamurthy 11/18/2018.
Chapter 6: CPU Scheduling
OverView of Scheduling
Limited-Preemption Scheduling of Sporadic Tasks Systems
Process Scheduling B.Ramamurthy 2/23/2019.
Processes and operating systems
Operating System , Fall 2000 EA101 W 9:00-10:00 F 9:00-11:00
Presentation transcript:

UCb Kim G. Larsen Arne Skou & Peter Koch Anders Brødløs Henrik Schiøler Dynamic Voltage Scaling using Optimal Infinite Scheduling work in progress POTENTIAL NEW CS

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 2 Overview zDynamic Voltage Scaling zTask Scheduling Principles using timed automata zEnergy Optimal Task Scheduling using priced timed automata

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 3 Energy vs. Batteries zIncreased processor performance => Increasing power dissipation zSlow battery development year Battery Capacity required expected

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 4 Energy in Processor zPower consumption mainly by dynamic power zSupply voltage reduction => decreased frequency energy V dd delay V dd We may miss deadlines A non-experts understanding of CMOS

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 5 Task Scheduling FCFS EDF Fixed Priority Time Slice CPU not always fully utilized ! We may occationally/dynamically lower frequency/supply voltage ! Save Energy with/without preemption

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 6 Task Scheduling Scheduling utilization of CPU T 2 is running { T 4, T 1, T 3 } ready ordered according to some given priority: (e.g. Fixed Priority, Earliest Deadline,) T1T1 T1T1 T2T2 T2T2 TnTn TnTn Scheduler ready done stop run P(i): period for T i C(i): execution time for T i D(i): deadline for T i P(i): period for T i C(i): execution time for T i D(i): deadline for T i

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 7 Modeling Task T1T1 T1T1 T2T2 T2T2 TnTn TnTn Scheduler ready done stop run

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 8 Modeling Sched. T1T1 T1T1 T2T2 T2T2 TnTn TnTn Scheduler ready done stop run

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 9 Modeling Queue T1T1 T1T1 T2T2 T2T2 TnTn TnTn Scheduler ready done stop run

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 10 Schedulability = Safety Property A ð : (Task0.Error or Task1.Error or …) : (Task0.Error or Task1.Error or …) May be extended with preemption

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 11 Energy Optimal Scheduling T1T1 T1T1 T2T2 T2T2 TnTn TnTn Scheduler ready done stop run F:= ?? ; V:= ?? “Choose” Freq/Scaling (Voltage/Cost) Using PTA

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 12 Energy Optimal Scheduling = Optimal Infinite Path c1c1 c2c2 c3c3 cncn t1t1 t2t2 t3t3 tntn  Value of path  : val(  ) = lim n !1 c n /t n Optimal Schedule  * : val(  * ) = inf  val(  ) Accumulated cost Accumulated time : (Task0.Error or Task1.Error or …)

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 13 Approximate Optimal Schedule E[] (not (Task0.Error or Task1.Error or Task2.Error) and (cost>=M imply time >= N)) = E[]  (N,M)  ²   (M,N) imply val(  ) · M/N C=MC=MC=MC=MC=MC=M T>=N T<NT<N T<NT<N T<NT<N XX X Optimal infinite schedule modulo cost-horizon C=MC=M

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 14 Preliminary Results Computed Schedule without preemption

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 15 Preliminary Results Computed Schedule WITH preemption

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 16 zEvent yPeriodic yDistributed yBurst zJob yConstant yDistributed yBranch zRTOS (Scheduler) yFCFS yEDF (Pre-emptive, Non Pre-emptive) yFixed Priority (Pre-emptive, Non Pre-emptive) yRR (Time Slicing) CISS Project w Analog Devices

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 17 DVS Simulation Tool MATLAB-based Tool developed in the ADI/CISS project

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 18 Future Work zExtension to EDF zExtension to preemption zEvaluation how close DVS strategies (simulation) are wrt optimal strategy (synthesized).  zEvaluation of performance of fixed DVS strategy on sporadic/non-deterministic/irregular task-models (worst/best perform.) 

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 19

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 20 Dynamic Voltage Scaling

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 21 The Plate Juggling Problem thanks to Oded Problem: avoid having the plates falling down

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 22 The Plate Juggling Problem thanks to Oded Problem: avoid having the plates falling down

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 23 The Plate Juggling Problem using Timed Automata A Plate The Joggler

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 24 Optimal Infinite Scheduling with respect to what ??

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 25 Optimal Infinite Scheduling with respect to what ?? Linearly Priced Timed Automata = Timed Automata with Costs (rates and impulses) 1 5

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 26 Optimal Infinite Scheduling with respect to what ?? 6/34/5 7/12/4 Linearly Multi-Priced Timed Automata = Timed Automata with Costs (rates and impulses) and Rewards (rates and impulses) 1 5/1 1

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 27 Optimal Infinite Scheduling : (Plate1.Bang or Plate2.Bang or …) c1c1 c2c2 c3c3 cncn r1r1 r2r2 r3r3 rnrn  Value of path  : val(  ) = lim n !1 c n /r n Optimal Schedule  * : val(  * ) = inf  val(  )

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 28 Optimal Infinite Scheduling : (Plate1.Bang or Plate2.Bang or …) c1c1 c2c2 c3c3 cncn r1r1 r2r2 r3r3 rnrn  Value of path  : val(  ) = lim n !1 c n /r n Optimal Schedule  * : val(  * ) = inf  val(  ) CLAIM: If EITHER Cost or Reward is purely impulse-driven then  * is computable [next AMETIST] CLAIM: If EITHER Cost or Reward is purely impulse-driven then  * is computable [next AMETIST]

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 29 Discrete Case Simplified Juggling Problem whack1 whack2 21

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 30 Discrete Case Simplified Juggling Problem whack1 whack2 21 x y

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 31 x y Discrete Case Infinite Schedule:   = (  (2);whack1;epsilon(1);  whack2;  (3);whack2;whack1 ) * whack1 whack2 21 Simplified Juggling Problem

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 32 Discrete Case val(  )= ( )/(2+1+3) = 1 whack1 whack2 21 Simplified Juggling Problem Infinite Schedule:   = (  (2);whack1;epsilon(1);  whack2;  (3);whack2;whack1 ) * x y

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 33 Discrete Case whack1 whack2 21 Simplified Juggling Problem Optimal Infinite Schedule (discrete case): Identify reachable cycle C * with smallest mean cost, i.e. cost(C * )/lgt(C *) is minimal. Optimal Infinite Schedule (discrete case): Identify reachable cycle C * with smallest mean cost, i.e. cost(C * )/lgt(C *) is minimal. Infinite Schedule:   = (  (2);whack1;epsilon(1);  whack2;  (3);whack2;whack1 ) * x y val(  )= ( )/(2+1+3) = 1

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 34 Appr Optimal Schedules using UPPAAL whack1 whack2 21 Simplified Juggling Problem  optimal ?? cost: impulse reward: time Infinite Schedule:   = (  (2);whack1;epsilon(1);  whack2;  (3);whack2;whack1 ) * x y val(  )= ( )/(2+1+3) = 1

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 35 Appr Optimal Schedules int[0,N] cost; clock time;

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 36 Appr Optimal Schedules int[0,N] cost; clock time; E[] (not (Plate1.Bang or Plate2.Bang) and (cost>=N-1 imply time >= M)) = E[]  (N,M)

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 37 Appr Optimal Schedules int[0,N] cost; clock time; E[] (not (Plate1.Bang or Plate2.Bang) and (cost>=N-1 imply time >= M)) = E[]  (N,M)  ²   (N,M) imply val(  ) · N/M

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 38 Appr Optimal Schedules int[0,N] cost; clock time; E[] (not (Plate1.Bang or Plate2.Bang) and (cost>=N-1 imply time >= M)) = E[]  (N,M) (N,M)(N,M) 9   ² []  (N,M) (3,3)(3,3)YES (3,4)(3,4)NO (7,8)(7,8)YES (7,9)(7,9)NO (10,12)YES (10,13)NO

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 39 Appr Optimal Schedules int[0,N] cost; clock time; (N,M)(N,M) 9   ² []  (N,M) (3,3)(3,3)YES (3,4)(3,4)NO (7,8)(7,8)YES (7,9)(7,9)NO (10,12)YES (10,13)NO x y  10  12

AMETIST Aalborg Sep 2003Kim G. Larsen UCb 40 Conclusion & Future Work  CLAIM:  and val(  ) computable for LMPTA’s with cost or reward being impulse-driven zOn-the-fly Computation zInteresting subclass: yImpulse cost (reward) / time