Query Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 23, 2004.

Slides:



Advertisements
Similar presentations
Equality Join R X R.A=S.B S : : Relation R M PagesN Pages Relation S Pr records per page Ps records per page.
Advertisements

Query Execution, Concluded Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2003 Some slide content may.
Lecture 13: Query Execution. Where are we? File organizations: sorted, hashed, heaps. Indexes: hash index, B+-tree Indexes can be clustered or not. Data.
CMSC424: Database Design Instructor: Amol Deshpande
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 14, Part B.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
SPRING 2004CENG 3521 Query Evaluation Chapters 12, 14.
Optimizing Query Execution Zachary G. Ives University of Pennsylvania CIS 650 – Implementing Data Management Systems January 26, 2005 Content on hashing.
©Silberschatz, Korth and Sudarshan13.1Database System Concepts Chapter 13: Query Processing Overview Measures of Query Cost Selection Operation Sorting.
Query Processing (overview)
Indexing, Sorting, and Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2004 Some slide content.
Query Optimization Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 18, 2003 Slide content courtesy Raghu Ramakrishnan.
Indexing and Sorting Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 22, 2005.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 1, 2005 Some slide content derived.
Indexing, Sorting, and Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 11, 2003 Some slide content.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Query Execution and Optimization Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 23, 2004.
Query Execution Zachary G. Ives University of Pennsylvania CIS 650 – Implementing Data Management Systems January 24, 2005 Content on hashing and sorting.
Evaluation of Relational Operations. Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation.
Sorting and Query Processing Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 29, 2005.
1 Query Execution in Databases: An Introduction Zack Ives CSE 544 Spring 2000.
1 Database Query Execution Zack Ives CSE Principles of DBMS Ullman Chapter 6, Query Execution Spring 1999.
1 Relational Operators. 2 Outline Logical/physical operators Cost parameters and sorting One-pass algorithms Nested-loop joins Two-pass algorithms.
CSCE Database Systems Chapter 15: Query Execution 1.
Database Management 9. course. Execution of queries.
Optimizing Query Execution Zachary G. Ives University of Pennsylvania CIS 650 – Implementing Data Management Systems September 18, 2008 Content on hashing.
©Silberschatz, Korth and Sudarshan13.1Database System Concepts Chapter 13: Query Processing Overview Measures of Query Cost Selection Operation Sorting.
Chapter 13 Query Processing Melissa Jamili CS 157B November 11, 2004.
Query Processing. Steps in Query Processing Validate and translate the query –Good syntax. –All referenced relations exist. –Translate the SQL to relational.
Relational Operator Evaluation. Overview Index Nested Loops Join If there is an index on the join column of one relation (say S), can make it the inner.
12.1Database System Concepts - 6 th Edition Chapter 12: Query Processing Overview Measures of Query Cost Selection Operation Join Operation Sorting 、 Other.
Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan Chapter 13: Query Processing.
Query Processing Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 12, 2015.
Chapter 12 Query Processing. Query Processing n Selection Operation n Sorting n Join Operation n Other Operations n Evaluation of Expressions 2.
CS4432: Database Systems II Query Processing- Part 3 1.
CS411 Database Systems Kazuhiro Minami 11: Query Execution.
Multi pass algorithms. Nested-Loop joins Tuple-Based Nested-loop Join Algorithm: FOR each tuple s in S DO FOR each tuple r in R DO IF r and s join to.
CS4432: Database Systems II Query Processing- Part 2.
CSCE Database Systems Chapter 15: Query Execution 1.
Advance Database Systems Query Optimization Ch 15 Department of Computer Science The University of Lahore.
Query Processing CS 405G Introduction to Database Systems.
Lecture 17: Query Execution Tuesday, February 28, 2001.
Query Execution. Where are we? File organizations: sorted, hashed, heaps. Indexes: hash index, B+-tree Indexes can be clustered or not. Data can be stored.
CS 440 Database Management Systems Lecture 5: Query Processing 1.
File Processing : Query Processing 2008, Spring Pusan National University Ki-Joune Li.
Hash Tables and Query Execution March 1st, Hash Tables Secondary storage hash tables are much like main memory ones Recall basics: –There are n.
Relational Operator Evaluation. overview Projection Two steps –Remove unwanted attributes –Eliminate any duplicate tuples The expensive part is removing.
Implementation of Database Systems, Jarek Gryz1 Evaluation of Relational Operations Chapter 12, Part A.
CS 540 Database Management Systems
Query Execution Query compiler Execution engine Index/record mgr. Buffer manager Storage manager storage User/ Application Query update Query execution.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 14, Part A (Joins)
1 Lecture 23: Query Execution Monday, November 26, 2001.
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
CS 540 Database Management Systems
CS 440 Database Management Systems
Database Management System
Evaluation of Relational Operations
File Processing : Query Processing
Query Optimization Overview
Database Query Execution
Indexing and Sorting Zachary G. Ives November 21, 2007
Query Optimization Overview
Lecture 2- Query Processing (continued)
Lecture 13: Query Execution
Database Internals Zachary Ives CSE 594 Spring 2002
Evaluation of Relational Operations: Other Techniques
B-Trees and Sorting Zachary G. Ives April 12, 2019
Lecture 11: B+ Trees and Query Execution
Lecture 20: Query Execution
Presentation transcript:

Query Execution Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems November 23, 2004

2 Recap of Recent Discussions  We can choose different data layout formats for our tuples:  Heap files  Sorted files  Hashed files  In addition, we can duplicate a certain amount of data in order to speed up access – an index over a search key  Clustered index has data in same order (typically embedded)  Unclustered index has data in some other order  We saw the B+ tree, a balanced search tree with high fan-out

3 Making Use of the Data + Indices: Query Execution  Query plans & exec strategies  Basic principles  Standard relational operators  Querying XML

4 Query Plans  Data-flow graph of relational algebra operators  Typically: determined by optimizer Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast SELECT * FROM PressRel p, Clients C WHERE p.Symbol = c.Symbol AND c.Client = ‘Atkins’ AND c.Symbol IN (SELECT CoSymbol FROM EastCoast)

5 Iterator-Based Query Execution  Execution begins at root  open, next, close  Propagate calls to children May call multiple child nexts  Efficient scheduling & resource usage Can you think of alternatives and their benefits? Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast

6 Execution Strategy Issues Granularity & parallelism:  Pipelining vs. blocking  Materialization Select Client = “Atkins” Join PressRel.Symbol = Clients.Symbol Scan PressRel Scan Clients Join PressRel.Symbol = EastCoast.CoSymbol Project CoSymbol Scan EastCoast

7 Basic Principles  Many DB operations require reading tuples, tuple vs. previous tuples, or tuples vs. tuples in another table  Techniques generally used:  Iteration: for/while loop comparing with all tuples on disk  Index: if comparison of attribute that’s indexed, look up matches in index & return those  Sort/merge: iteration against presorted data (interesting orders)  Hash: build hash table of the tuple list, probe the hash table  Must be able to support larger-than-memory data

8 Basic Operators  One-pass operators:  Scan  Select  Project  Multi-pass operators:  Join  Various implementations  Handling of larger-than-memory sources  Semi-join  Aggregation, union, etc.

9 1-Pass Operators: Scanning a Table  Sequential scan: read through blocks of table  Index scan: retrieve tuples in index order  May require 1 seek per tuple! When?  Cost in page reads – b(T) blocks, r(T) tuples  b(T) pages for sequential scan  Up to r(T) for index scan if unclustered index  Requires memory for one block

10 1-Pass Operators: Select(  )  Typically done while scanning a file  If unsorted & no index, check against predicate: Read tuple While tuple doesn’t meet predicate Read tuple Return tuple  Sorted data: can stop after particular value encountered  Indexed data: apply predicate to index, if possible  If predicate is:  conjunction: may use indexes and/or scanning loop above (may need to sort/hash to compute intersection)  disjunction: may use union of index results, or scanning loop

11 1-Pass Operators: Project (  )  Simple scanning method often used if no index: Read tuple While tuple exists Output specified attributes Read tuple  Duplicate removal may be necessary  Partition output into separate files by bucket, do duplicate removal on those  If have many duplicates, sorting may be better  If attributes belong to an index, don’t need to retrieve tuples!

12 Multi-pass Operators: Join ( ⋈ ) – Nested-Loops Join  Requires two nested loops: For each tuple in outer relation For each tuple in inner, compare If match on join attribute, output  Results have order of outer relation  Can do over indices  Very simple to implement, supports any joins predicates  Supports any join predicates  Cost: # comparisons = t(R) t(S) # disk accesses = b(R) + t(R) b(S) Join outerinner

13 Block Nested-Loops Join  Join a page (block) at a time from each table: For each page in outer relation For each page in inner, join both pages If match on join attribute, output  More efficient than previous approach:  Cost: # comparisons still = t(R) t(S) # disk accesses = b(R) + b(R) * b(S)

14 Index Nested-Loops Join For each tuple in outer relation For each match in inner’s index Retrieve inner tuple + output joined tuple  Cost: b(R) + t(R) * cost of matching in S  For each R tuple, costs of probing index are about:  1.2 for hash index, 2-4 for B+-tree and:  Clustered index: 1 I/O on average  Unclustered index: Up to 1 I/O per S tuple

15 Two-Pass Algorithms Sort-based Need to do a multiway sort first (or have an index) Approximately linear in practice, 2 b(T) for table T Hash-based Store one relation in a hash table

16 (Sort-)Merge Join  Requires data sorted by join attributes Merge and join sorted files, reading sequentially a block at a time  Maintain two file pointers  While tuple at R < tuple at S, advance R (and vice versa)  While tuples match, output all possible pairings  Preserves sorted order of “outer” relation  Very efficient for presorted data  Can be “hybridized” with NL Join for range joins  May require a sort before (adds cost + delay)  Cost: b(R) + b(S) plus sort costs, if necessary In practice, approximately linear, 3 (b(R) + b(S))

17 Hash-Based Joins  Allows partial pipelining of operations with equality comparisons  Sort-based operations block, but allow range and inequality comparisons  Hash joins usually done with static number of hash buckets  Generally have fairly long chains at each bucket  What happens when memory is too small?

18 Hash Join Read entire inner relation into hash table (join attributes as key) For each tuple from outer, look up in hash table & join  Very efficient, very good for databases  Not fully pipelined  Supports equijoins only  Delay-sensitive

19 Running out of Memory  Prevention: First partition the data by value into memory- sized groups Partition both relations in the same way, write to files Recursively join the partitions  Resolution: Similar, but do when hash tables full Split hash table into files along bucket boundaries Partition remaining data in same way Recursively join partitions with diff. hash fn!  Hybrid hash join: flush “lazily” a few buckets at a time  Cost: <= 3 * (b(R) + b(S))

20 Pipelined Hash Join Useful for Joining Web Sources  Two hash tables  As a tuple comes in, add to the appropriate side & join with opposite table  Fully pipelined, adaptive to source data rates  Can handle overflow as with hash join  Needs more memory

21 Aggregation (  )  Need to store entire table, coalesce groups with matching GROUP BY attributes  Compute aggregate function over group:  If groups are sorted or indexed, can iterate:  Read tuples while attributes match, compute aggregate  At end of each group, output result  Hash approach:  Group together in hash table (leave space for agg values!)  Compute aggregates incrementally or at end  At end, return answers  Cost: b(t) pages. How much memory?

22 Other Operators  Duplicate removal very similar to grouping  All attributes must match  No aggregate  Union, difference, intersection:  Read table R, build hash/search tree  Read table S, add/discard tuples as required  Cost: b(R) + b(S)

23 SQL Operations In a whirlwind, you’ve seen most of relational operators:  Select, Project, Join  Group/aggregate  Union, Difference, Intersection  Others are used sometimes:  Various methods of “for all,” “not exists,” etc  Recursive queries/fixpoint operator  etc.

24 What about XQuery?  Major difference: bind variables to subtrees; treat each set of bindings as a tuple  Select, project, join, etc. on tuples of bindings  Plus we need some new operators:  XML construction:  Create element (add tags around data)  Add attribute(s) to element (similar to join)  Nest element under other element (similar to join)  Path expression evaluation – create the binding tuples

25 Standard Method: XML Query Processing in Action Parse XML: Griffith Sims 12 Pike Pl. Seattle … Match paths: $s = (root) /db/store $m = $s/manager/data() $c = $s//city/data() $s$m$c #1GriffithSeattle #1SimsSeattle #2JonesMadison

26 X-Scan: “Scan” for Streaming XML, Based on SAX  We often re-read XML from net on every query Data integration, data exchange, reading from Web  Could use an XML DBMS, which looks like an RDBMS except for some small extensions  But cannot amortize storage costs for network data  X-scan works on streaming XML data  Read & parse  Evaluate path expressions to select nodes

27 $s$m$c X-Scan: Incremental Parsing & Path Matching Jones 30 Main St. Berkeley Griffith Sims 12 Pike Pl. Seattle #1Griffith #1Sims Seattle #2JonesBerkeley #1 #2 Tuples for query: $s $m $c 12 3 dbstore 45 6 manager data() 67 8 citydata()

28 What Else Is Special in XQuery?  Support for arbitrary recursive functions  Construction of XML tags  But we saw how that could be done using “outer union” previously, and we can use similar approaches here

29 Query Execution Is Still a Vibrant Research Topic  Adaptive scheduling of operations – combining with optimization (discussed next!)  Robust – exploit replicas, handle failures  Show and update partial/tentative results  More interactive and responsive to user  More complex data models – XML, semistructured data  Next week: how we actually pick which algorithms to use, and when – query optimization