Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent.

Slides:



Advertisements
Similar presentations
New Insights into the Acceleration and Transport of Cosmic Rays in the Galaxy or Some Simple Considerations J. R. Jokipii University of Arizona Presented.
Advertisements

Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope Markus Ackermann SLAC National Accelerator Laboratory on behalf.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.
GALPROP tutorial Igor Moskalenko (Stanford U.). Igor V. Moskalenko 2 November 17, 2005GALPROP manual/Rome2, Italy Obtaining GALPROP The link:
Igor V. Moskalenko (Stanford) GALPROP Model for Galactic CR propagation and diffuse γ -ray emission.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR.
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
High-energy electrons, pulsars, and dark matter Martin Pohl.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
38 th COSPAR, Bremen – July 18, 2010 :: IVM/Stanford-KIPAC 1 Galactic Cosmic Rays Igor V. Moskalenko Stanford & KIPAC Igor V. Moskalenko Stanford & KIPAC.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Diffuse Emission and Unidentified Sources
Cosmic Rays High Energy Astrophysics
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies in the EGRET era and perspectives for GLAST Igor V. Moskalenko Stanford.
Ching-Yuan Huang (黄庆元) 20 October 2010
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Igor V. Moskalenko (Stanford) with Seth Digel (SLAC) Troy Porter (LSU) Olaf Reimer (Stanford) Olaf Reimer (Stanford) Andrew W. Strong (MPE) Andrew W. Strong.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
11 Geant4 and the Next Generation of Space-Borne Cosmic Ray Experiments Geant4 Space Users Workshop Hiroshima, Japan August, 2015 MS Sabra 1, AF.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Topics on Dark Matter Annihilation
Current work on GALPROP
Dark Matter in Galactic Gamma Rays
Can dark matter annihilation account for the cosmic e+- excesses?
Optimizing Galaxy Simulations using FGST Observations
Status and issues for the LAT interstellar emission model
High Energy emission from the Galactic Center
Splinter section: Diffuse emission
Particle Acceleration in the Universe
Testing the origin of high- energy cosmic rays
Isotopic abundances of CR sources
Galactic Diffuse Emission for DC2
on behalf of the Fermi-LAT Collaboration
Diffuse Gamma-Rays seen by Fermi Gamma-ray Space Telescope
Presentation transcript:

Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent results, and perspective GALPROP: principles, internal structure, recent results, and perspective  GALPROP: principles, inputs/outputs, calculations  Recent results (GeV excess & pbars, extragalactic background)  Dark Matter  Near future developments

Igor V. Moskalenko/NASA-GSFC 2 GLAST meeting/SLAC2004/09/27-30 Transport Equation ψ(r,p,t) – ψ(r,p,t) – density per total momentum sources (SNR, nuclear reactions…) convection diffusion diffusive reacceleration E-loss convection fragmentation radioactive decay

Igor V. Moskalenko/NASA-GSFC 3 GLAST meeting/SLAC2004/09/27-30 CR Propagation: Milky Way Galaxy Halo Gas, sources 100 pc 40 kpc Sun 4-12 kpc /ccm 1-100/ccm Intergalactic space 1 kpc~3x10 18 cm R Band image of NGC GHz continuum (NVSS), 1,2,…64 mJy/ beam Optical image: Cheng et al. 1992, Brinkman et al Radio contours: Condon et al AJ 115, 1693 NGC891

Igor V. Moskalenko/NASA-GSFC 4 GLAST meeting/SLAC2004/09/27-30 CR Interactions in the Interstellar Medium e + - Sources: SNRs, Shocks, Superbubbles Particle acceleration Photon emission P He CNO X,γ gas BISRF π e P _ LiBeB ISM diffusion energy losses reacceleration convection etc. π 0 synchrotron IC bremss Chandra GLAST ACE BESS Halo disk escape He CNO solar modulation AMS p

Igor V. Moskalenko/NASA-GSFC 5 GLAST meeting/SLAC2004/09/27-30 GALPROP Input: galdef-files GALPROP is parameter-driven (user can specify everything!) Grids 2D/3D –options; symmetry options (full 3D, 1/8 -quadrants) Spatial, energy/momentum, latitude & longitude grids Ranges: energy, R, x, y, z, latitude & longitude Time steps Propagation parameters D xx, V A, V C & injection spectra (p,e) X-factors (including R-dependence) Sources Parameterized distributions Known SNRs Random SNRs (with given/random spectra), time dependent eq. Other Source isotopic abundances, secondary particles (pbar, e ±, γ, synchro), anisotropic IC, energy losses, nuclear production cross sections…

Igor V. Moskalenko/NASA-GSFC 6 GLAST meeting/SLAC2004/09/27-30 Grids Z R,x,y Typical grid steps (can be arbitrary!) Δz = 0.1 kpc, ΔΔz = 0.01 kpc (gas averaging) ΔR = 1 kpc ΔE = x1.2 (log-grid)

Igor V. Moskalenko/NASA-GSFC 7 GLAST meeting/SLAC2004/09/27-30 Gas Distribution Sun Molecular hydrogen H 2 is traced using J=1-0 transition of 12 CO, concentrated mostly in the plane (z~70 pc, R<10 kpc) Atomic hydrogen H I has a wider distribution (z~1 kpc, R~30 kpc) Ionized hydrogen H II – small proportion, but exists even in halo (z~1 kpc)

Igor V. Moskalenko/NASA-GSFC 8 GLAST meeting/SLAC2004/09/27-30 Interstellar Radiation Field Energy density Sun Stellar Dust CMB

Igor V. Moskalenko/NASA-GSFC 9 GLAST meeting/SLAC2004/09/27-30 Nuclear Reaction Network+Cross Sections p,EC,β + β -, n Be 7 Be 10 Al 26 Cl 36 Mn 54 Plus some dozens of more complicated reactions. But many cross sections are not well known… V 49 Ca 41 Cr 51 Fe 55 Co 57 Ar 37 Secondary, radioactive ~1 Myr & K-capture isotopes

Igor V. Moskalenko/NASA-GSFC 10 GLAST meeting/SLAC2004/09/27-30 Nuclear component in CR: What we can learn? Propagation parameters: Diffusion coeff., halo size, Alfvén speed, convection velosity… Energy markers: Reacceleration, solar modulation Local medium: Local Bubble Material & acceleration sites, nucleosynthesis (r- vs. s-processes) Stable secondaries: Li, Be, B, Sc, Ti, V Radio (t 1/2 ~1 Myr): 10 Be, 26 Al, 36 Cl, 54 Mn K-capture: 37 Ar, 49 V, 51 Cr, 55 Fe, 57 Co Short t 1/2 radio 14 C & heavy Z>30 Heavy Z>30: Cu, Zn, Ga, Ge, Rb Nucleo- synthesis: supernovae, early universe, Big Bang… Solar modulation Diffuse γ-rays Galactic, extragalactic: blazars, relic neutralino Dark Matter (p,đ,e +,γ) -

Igor V. Moskalenko/NASA-GSFC 11 GLAST meeting/SLAC2004/09/27-30 Fixing Propagation Parameters: Standard Way Using secondary/primary nuclei ratio: Diffusion coefficient and its index Propagation mode and its parameters (e.g., reacceleration V A, convection V z ) Radioactive isotopes: Galactic halo size Z h Z h increase B/C Be 10 /Be 9 Interstellar E k, MeV/nucleon

Igor V. Moskalenko/NASA-GSFC 12 GLAST meeting/SLAC2004/09/27-30 Peak in the Secondary/Primary Ratio Leaky-box model: fitting path-length distribution -> free function B/C Diffusion models:  Diffusive reacceleration  Convection  Damping of interstellar turbulence  Etc. Measuring many isotopes in CR simultaneously may help to distinguish

Igor V. Moskalenko/NASA-GSFC 13 GLAST meeting/SLAC2004/09/27-30 Heliosphere Flux 20 GeV/n

Igor V. Moskalenko/NASA-GSFC 14 GLAST meeting/SLAC2004/09/27-30 Electron Fluctuations/SNR stochastic events GeV electrons 100 TeV electrons GALPROP/Credit S.Swordy Energy losses 10 7 yr 10 6 yr Bremsstrahlung 1 TeV Ionization Coulomb IC, synchrotron 1 GeV Ekin, GeV E(dE/dt) -1,yr Electron energy loss timescale: 1 TeV: ~ yr 100 TeV: ~3 000 yr

Igor V. Moskalenko/NASA-GSFC 15 GLAST meeting/SLAC2004/09/27-30 CR Variations in Space & Time More frequent SN in the spiral arms Historical variations of CR intensity over yr (Be 10 in South Polar ice) Konstantinov et al Electron/positron energy losses Different “collecting” areas A vs. p

Igor V. Moskalenko/NASA-GSFC 16 GLAST meeting/SLAC2004/09/27-30 GALPROP Output/FITS files Provides literally everything: All nuclei and particle spectra in every grid point (x,y,R,z,E) -FITS files Separately for π 0 -decay, IC, bremsstrahlung: Emissivities in every grid point (x,y,R,z,E,process) Skymaps with a given resolution (l,b,E,process) “CONSUMERS:” AMS, Pamela – dark matter searches ACE, TIGER – interpretation of isotopic abundances HEAT – electrons, positrons GLAST(?) – spectrum of the diffuse emission & background model

Igor V. Moskalenko/NASA-GSFC 17 GLAST meeting/SLAC2004/09/27-30 numerical solution of cosmic-ray transport 2D or 3D grid time-independent or time-dependent algorithm primary source functions (p, He, C.... Ni) source abundances, spectra primary propagation -starting from maxA=64 source functions (Be, B...., e +,e -, pbars) using primaries and gas distributions secondary propagation tertiary source functions tertiary propagation  -rays (IC, bremsstrahlung, π o -decay) radio: synchrotron

Igor V. Moskalenko/NASA-GSFC 18 GLAST meeting/SLAC2004/09/27-30 GALPROP Calculations Constraints Bin size (x,y,z) depends on the computer speed, RAM; final run can be done on a very fine grid ! No other constraints ! –any required process/formalism can be implemented; vectorization !! Calculations (γ -ray related)  Vectorization options  Heliospheric modulation: routinely force-field, can use Potgieter model 1.For a given propagation parameters: propagate p, e, nuclei, secondaries (currently in 2D) 2.The propagated distributions are stored 3.With propagated spectra: calculate the emissivities (π 0 -decay, IC, bremss) in every grid point 4.Integrate the emissivities over the line of sight: GALPROP has a full 3D grid, but currently only 2D gas maps (H2, H I, H II) Using actual annular maps (column density) at the final step High latitudes above b=40˚ -using integrated H I distribution

Igor V. Moskalenko/NASA-GSFC 19 GLAST meeting/SLAC2004/09/27-30 Near Future Developments Full 3D Galactic structure: 3D gas maps (from S.Digel, S.Hunter and/or smbd else) 3D interstellar radiation & magnetic fields (A.Strong & T.Porter) Cross sections: Blattnig et al. formalism for π 0 -production Diffractive dissociation with scaling violation (T.Kamae) Isotopic cross sections (with S.Mashnik, LANL; try to motivate BNL, JENDL-Japan, other Nuc. Data Centers) Energy range: Extend toward sub-MeV range to compare with INTEGRAL diffuse emission (continuum; 511 keV line) Modeling the local structure: Local SNRs with known positions and ages Local Bubble –may be done at the final calculation step Heliospheric modulation: Implementing a complimentary drift model by M.Potgieter Visualization tool (started) using the classes of CERN ROOT package: images, profiles, and spectra from GALPROP to be directly compared with data Improving the GALPROP module structure (for DM studies) & developing a dedicated Web-site to allow for a communication with users

Igor V. Moskalenko/NASA-GSFC 20 GLAST meeting/SLAC2004/09/27-30 Recent results

Igor V. Moskalenko/NASA-GSFC 21 GLAST meeting/SLAC2004/09/27-30 Wherever you look, the GeV  - ray excess is there ! 4a-f

Igor V. Moskalenko/NASA-GSFC 22 GLAST meeting/SLAC2004/09/27-30 Reacceleration Model: Secondary Pbars B/C ratioAntiproton flux E k, GeV/nucleon E k, GeV

Igor V. Moskalenko/NASA-GSFC 23 GLAST meeting/SLAC2004/09/27-30 Positron Excess ?  Are all the excesses connected somehow ?  A signature of a new physics (DM) ? Caveats:  Systematic errors ?  A local source of primary positrons ?  Large E-losses -> local spectrum… HEAT (Coutu et al. 1999) Leaky-Box GALPROP e + /e E, GeV

Igor V. Moskalenko/NASA-GSFC 24 GLAST meeting/SLAC2004/09/27-30 Matter, Dark Matter, Dark Energy… Ω ≡ ρ/ρ crit Ω tot =1.02 +/−0.02 Ω Matter =4.4%+/−0.4% Ω DM =23% +/−4% Ω Vacuum =73% +/−4% Supersymmetry is a mathematically beautiful theory, and would give rise to a very predictive scenario, if it is not broken in an unknown way which unfortunately introduces a large number of unknown parameters… Lars Bergström (2000) SUSY DM candidate has also other reasons to exist -particle physics…

Igor V. Moskalenko/NASA-GSFC 25 GLAST meeting/SLAC2004/09/27-30 Example “Global Fit:” diffuse γ’s, pbars, positrons  Look at the combined (pbar,e +,γ) data  Possibility of a successful “global fit” can not be excluded -non-trivial !  If successful, it may provide a strong evidence for the SUSY DM pbars e+e+ γ GALPROP/W. de Boer et al. hep-ph/ Supersymmetry:  MSSM  Lightest neutralino χ 0  m χ ≈ GeV  S=½ Majorana particles  χ 0 χ 0 −> p, pbar, e +, e −, γ

Igor V. Moskalenko/NASA-GSFC 26 Nuclear Data-2004/09/28, Santa Fe GeV excess: Optimized model Uses all sky and antiprotons & gammas to fix the nucleon and electron spectra  Uses antiprotons to fix the intensity of CR HE  Uses gammas to adjust  the nucleon spectrum at LE  the intensity of the CR electrons (uses also synchrotron index)  Uses EGRET data up to 100 GeV protons electrons x4 x1.8 antiprotons

Igor V. Moskalenko/NASA-GSFC 27 GLAST meeting/SLAC2004/09/27-30 e + ~0.1e - Diffuse Gammas from Secondary Positrons/Electrons e + /e electrons positrons gammas e + =e - sec.e - =10% Important below 200 MeV Heliosphere Interstellar

Igor V. Moskalenko/NASA-GSFC 28 GLAST meeting/SLAC2004/09/27-30 Anisotropic Inverse Compton Scattering  Electrons in the halo see anisotropic radiation  Observer sees mostly head-on collisions e-e- e-e- head-on: large boost & more collisions γ γ small boost & less collisions γ sun Energy density Z, kpc R=4 kpc high latitudes !

Igor V. Moskalenko/NASA-GSFC 29 GLAST meeting/SLAC2004/09/27-30 Diffuse Gammas at Different Sky Regions Hunter et al. region: l=300°-60°,|b|<10° Intermediate latitudes: l=0°-360°,10°<|b|<20° Outer Galaxy: l=90°-270°,|b|<10° Intermediate latitudes: l=0°-360°,20°<|b|<60°

Igor V. Moskalenko/NASA-GSFC 30 GLAST meeting/SLAC2004/09/27-30 Longitude Profiles |b|<5° MeV 2-4 GeV GeV 4-10 GeV

Igor V. Moskalenko/NASA-GSFC 31 GLAST meeting/SLAC2004/09/27-30 Latitude Profiles: Inner Galaxy MeV 2-4 GeV0.5-1 GeV 4-10 GeV20-50 GeV

Igor V. Moskalenko/NASA-GSFC 32 GLAST meeting/SLAC2004/09/27-30 Latitude Profiles: Outer Galaxy MeV 2-4 GeV GeV 4-10 GeV

Igor V. Moskalenko/NASA-GSFC 33 GLAST meeting/SLAC2004/09/27-30 Extragalactic Gamma-Ray Background Predicted vs. observed E, MeV E 2 xF Sreekumar et al Strong et al Elsaesser & Mannheim, astro-ph/ Blazars Cosmological neutralinos

Igor V. Moskalenko/NASA-GSFC 34 GLAST meeting/SLAC2004/09/27-30 Distribution of CR Sources & Gradient in the CO/H 2 CR distribution from diffuse gammas (Strong & Mattox 1996) SNR distribution (Case & Bhattacharya 1998) Pulsar distribution (Lorimer 2004) sun X CO =N(H 2 )/W CO : Histo –This work, Strong et al.’ Sodroski et al.’95,’97 1.9x Strong & Mattox’96 ~Z -1 – Boselli et al.’02 ~Z Israel’97,’00, [O/H]=0.04,0.07 dex/kpc

Igor V. Moskalenko/NASA-GSFC 35 GLAST meeting/SLAC2004/09/27-30 Again Diffuse Galactic Gamma Rays More IC in the GC – better agreement ! The pulsar distribution vs. R falls too fast OR larger H 2 /CO gradient Very good agreement !

Igor V. Moskalenko/NASA-GSFC 36 GLAST meeting/SLAC2004/09/27-30 Conclusions I Accurate measurements of diffuse gamma rays, secondary antiprotons, and other CR species simultaneously may provide a new vital information for Astrophysics – in broad sense, Particle Physics, and Cosmology. Gamma rays: GLAST is scheduled to launch in 2007 – diffuse gamma rays is one of its priority goals CR species: New measurements at LE & HE simultaneously are highly desirable (Pamela, S-TIGER, AMS…), sec. positrons ! Hunter et al. region: l=300°-60°,|b|<10° Dark Matter Z h increase B/C Be 10 /Be 9

Igor V. Moskalenko/NASA-GSFC 37 GLAST meeting/SLAC2004/09/27-30 Conclusions II Antiprotons: Pamela (2005), AMS (2008) and a new BESS-polar instrument to fly a long- duration balloon mission (in 2004, 2006…), we thus will have more accurate and restrictive antiproton data HE electrons: Several missions are planned to target specifically HE electrons We must be ready! GALPROP is a propagation model to play now

Igor V. Moskalenko/NASA-GSFC 38 GLAST meeting/SLAC2004/09/27-30 Thank you !