Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.

Slides:



Advertisements
Similar presentations
Superconducting qubits
Advertisements

Kondo Physics from a Quantum Information Perspective
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
N ON - EQUILIBRIUM DYNAMIC CRITICAL SCALING OF THE QUANTUM I SING CHAIN Michael Kolodrubetz Princeton University In collaboration with: Bryan Clark, David.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Suppression of Spin Diffusion: Modeling and Simulations Gennady.
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath (Berkeley) Philipp Werner (ETH) Matthias.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Subir Sachdev (Yale) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition cond-mat/
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Chap.3 A Tour through Critical Phenomena Youjin Deng
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Presentation in course Advanced Solid State Physics By Michael Heß
Entanglement in the Kondo Spin Chain Abolfazl Bayat 1, Sougato Bose 1, Pasquale Sodano 2 1 University College London, London, UK. 2 University of Perugia,
M.T. Bell et al., Quantum Superinductor with Tunable Non-Linearity, Phys. Rev. Lett. 109, (2012). Many Josephson circuits intended for quantum computing.
LUTTINGER LIQUID Speaker Iryna Kulagina T. Giamarchi “Quantum Physics in One Dimension” (Oxford, 2003) J. Voit “One-Dimensional Fermi Liquids” arXiv:cond-mat/
Chiranjib Mitra IISER-Kolkata
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Quantum dynamics of two Brownian particles
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
From J.R. Waldram “The Theory of Thermodynamics”.
Scaling and the Crossover Diagram of a Quantum Antiferromagnet
Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev,
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
Purity and Continuous Quantum Phase Transition in XX spin chain Wonmin Son In collaboration with; Luigi Amico (Madrid), Francesco Plastina (Italy), Vlatko.
David Pekker (U. Pitt) Gil Refael (Caltech) Vadim Oganesyan (CUNY) Ehud Altman (Weizmann) Eugene Demler (Harvard) The Hilbert-glass transition: Figuring.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Competing orders and quantum criticality
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
International Scientific Spring 2016
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum Mechanical Models for Near Extremal Black Holes
Review on quantum criticality in metals and beyond
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Science 303, 1490 (2004); cond-mat/ cond-mat/
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Deconfined quantum criticality
Addition of Angular Momentum
Presentation transcript:

Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843 (1997); 78, 2220 (1997); 95, (2005). Kedar Damle (TIFR, Mumbai) Subir Sachdev (Harvard) Peter Young (UCSC)

T Quantum-critical Why study quantum phase transitions ? g gcgc Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g: Critical point is (often) a novel (entangled) state of matter without quasiparticle excitations Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures.

I. Quantum Ising Chain 2Jg

Full Hamiltonian leads to entangled states at g of order unity

LiHoF 4 Experimental realization

Weakly-coupled qubits Ground state: Lowest excited states: Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p Entire spectrum can be constructed out of multi-quasiparticle states p

Three quasiparticle continuum Quasiparticle pole Structure holds to all orders in 1/g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~3  Weakly-coupled qubits

Quantum mechanical S-matrix has a universal form at low momenta (in one dimension) (-1)

Ground states: Lowest excited states: domain walls Coupling between qubits creates new “domain- wall” quasiparticle states at momentum p p Strongly-coupled qubits

Two domain-wall continuum Structure holds to all orders in g S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ~2  Strongly-coupled qubits

Entangled states at g of order unity g gcgc “Flipped-spin” Quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) g gcgc Ferromagnetic moment N 0 P. Pfeuty Annals of Physics, 57, 79 (1970) g gcgc Excitation energy gap 

Critical coupling No quasiparticles --- dissipative critical continuum

Quasiclassical dynamics P. Pfeuty Annals of Physics, 57, 79 (1970) S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997).

II. Quantum O(3) non-linear  model

Quantum mechanical S-matrix has a universal form at low momenta (in one dimension) (-1)

x t

t (0,0) (x,t) x

III. Quantum sine-Gordon model

Quantum mechanical S-matrix has a universal form at low momenta (in one dimension) (-1)

III. Quantum sine-Gordon model

Conclusions 1.Large, entangled quantum systems close to equilibrium have an “intrinsic” relaxation rate independent of the strength of the coupling to a heat bath. 2.This relaxation rate has a universal form near interacting quantum critical points 3.In one-dimensional systems