XMASS ・ Physics motivation of XMASS ・ R&D using 100kg detector ・ Next step: 800 kg detector Kamioka observatory, ICRR, Univ. of Tokyo M. Nakahata for XMASS.

Slides:



Advertisements
Similar presentations
Masaki Yamashita XMASS at Kamioka Large Scale Cryogenic detector in the underground laboratory Masaki Yamashita Kamioka observatory, ICRR, Univ. Of Tokyo.
Advertisements

Status of the XMASS experiment S. Moriyama for the XMASS collaboration Kamioka observatory, Institute for Cosmic Ray Research, Univ. of Tokyo, July 27,
2007 March 21stLAUNCH MPI, Heiderberg1 Solar Neutrino at KamLAND Sei Yoshida Reserch Center for Neutrino Science, Tohoku Univ. for the KamLAND.
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
Study of alpha backgrounds using flash ADC in the XMASS experiment Feb. 22nd, 2013 ICRR, Suzuki-Lab. M2 Osamu Takachio.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
The XMASS 800kg Experiment Jing LIU IPMU, Univ. of Tokyo TAUP2011, Munich XMASS collaboration: Kamioka Observatory, ICRR, Univ. of Tokyo : Y. Suzuki, M.
Reflectivity Measurements of Critical Materials for the LUX Dark Matter Experiment Theory My experiment was a cyclic process involving software, engineering,
Status XMASS experiment M. Nakahata for XMASS collaboration Kamioka Observatory, ICRR, University of Tokyo Dark2007, September 28, 2007.
suekane 05 Erice School1 KamLAND F.Suekane Research Center for Neutrino Science Tohoku University Erice School
Stockholm, May 2-6, 2006 SNOW Sub-MeV solar neutrinos: experimental techniques and backgrounds Aldo Ianni Gran Sasso Laboratory, INFN.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Results and Future of the KamLAND Experiment
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
1 1. Introduction 2. R&D status using prototype detector 3. Summary XMASS experiment 8 th June 2005 A.Takeda for the XMASS collaboration Kamioka Observatory,
Proportional Light in a Dual Phase Xenon Chamber
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
東大宇宙線研 平出克樹 2011 年 3 月 7 日 基研研究会 素粒子物理学の進展
Measurement of Kr background in the XMASS experiment ICRR master’s course in physics Keisuke Hieda 1.
Cygnus 2013/06/05 Nagoya univ. H.Uchida for XMASS collaboration 1.
KamLAND and Geoneutrinos Sanshiro Enomoto KamLAND Collaboration RCNS, Tohoku University 1. Review of Previous Results 2. Recent Improvements (Preliminary)
Development of A Scintillation Simulation for Carleton EXO Project Rick Ueno Under supervision of Dr. Kevin Graham.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
TAUP2007, Sendai, 12/09/2007 Vitaly Kudryavtsev 1 Limits on WIMP nuclear recoils from ZEPLIN-II data Vitaly A. Kudryavtsev Department of Physics and Astronomy.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of XMASS GLA2011, Department of Physics, University of Jyvaskyla, Finland 8 th Jun A.Takeda for the XMASS collaboration Kamioka Observatory,
Low background techniques from XMASS Low Radioactivity Techniques 2013 Laboratori Nazionali del Gran Sasso Assergi (AQ), Italy, April 10-12, 2013 Hiroshi.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
XMASS 2012 Shanghai Particle Physics and Cosmology Symposium Hiroshi Ogawa (ICRR, Univ. of Tokyo) Sep. 16 th, 2012.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
The current status of XMAS S Introduction Current status of prototype detector Next step Summary Cryodet 1 Y.Koshio for XMASS collaboration (Kamioka observatory,
(direct) Dark Matter Searches and XMASS experiment  DM search: status, prospects and difficulties for large scale experiments  XMASS experiment S. Moriyama.
XMASS experiment Current status 10 th ICEPP Symposium in Hakuba 16 Feb 2004 Yohei Ashie ICRR Univ.of Tokyo.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
in Beijing August 18, 2004 Recent status of the XMASS project Physics goals at XMASS Overview of XMASS Current status of R&D Summary.
XMASS experiment and its double beta decay option XMASS experiment for dark matter search and low energy solar neutrino detection Double beta decay option.
1 1. Introduction kg detector design 3. Summary XMASS experiment 15 th Sep A.Takeda for the XMASS collaboration Kamioka Observatory, ICRR,
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
XMASS experiment Ultra-low BG, multi-purpose detector 3kg fiducial volume (FV) prototype detector 1ton (100kg FV) detector for DM Search S. Moriyama for.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
DARK MATTER SEARCH Carter Hall, University of Maryland.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
XMASS 1. XMASS: physics targets 2. 3kg FV prototype detector feasibility confirmation kg liquid xenon detector Search for dark matter 19 th October.
June INPC20071 Study of 48 Ca double beta decay with CANDLES OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
1 Status and background considerations of XMASS experiment Yeongduk Kim Sejong University for the XMASS collaboration LRT2006 Oct. 3, 2006.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
CaMoO 4 at low temperature - LAAPD and PMTs - Woonku Kang, Jungil Lee, Eunju Jeon, Kyungju Ma, Yeongduk Kim Sejong University for KIMS collaboration Double.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
Xiangyi Cui Shanghai Jiao Tong U. On Behalf of the Collaboration
WIMP search from XMASS-I fiducial volume data with
2nd International Workshop on Double Beta Decay
XAX Can DM and DBD detectors combined?
Solar Neutrino Problem
Status of Neutron flux Analysis in KIMS experiment
XMASS Y. Suzuki (for the XMASS Collaboration) Kamioka Observatory,
Presentation transcript:

XMASS ・ Physics motivation of XMASS ・ R&D using 100kg detector ・ Next step: 800 kg detector Kamioka observatory, ICRR, Univ. of Tokyo M. Nakahata for XMASS collaboration LowNu 2003, May 20

XMASS collaboration ICRR, Kamioka observatory Y. Suzuki, M. Nakahata, Y. Itow, M. Shiozawa, Y. Takeuchi, S. Moriyama, T. Namba, M. Miura, Y. Koshio, Y. Fukuda, S. Fukuda, Y. Ashie, A. Minamino, R. Nambu ICRR, RCNN T. Kajita, K. Kaneyuki, A. Okada, M. Ishitsuka Saga Univ. T. Tsukamoto*, H. Ohsumi, Y. Iimori, Niigata Univ. K. Miyano, K. Ito Tokai Univ. K. Nishijima, T. Hashimoto, Y. Nakajima Gifu Univ. S. Tasaka, Waseda Univ. M. Yamashita, S. Suzuki, K. Kawasaki, J. Kikuchi, T. Doke, TIT Y. Watanabe, K. Ishino, Yokohama National Univ. S. Nakamura, T.Fukuda, J.Hosaka, Seoul National Univ. Soo-Bong Kim, In-Seok Kang, INR-Kiev Y. Zdesenko, O. Ponkratenko, UCI H. Sobel, M. Smy, M. Vagins, P.Cravens

XMASS Scintillation detection by PMTs Dark M: Xenon detector for weakly interacting MASSive Particles  : Xenon neutrino MASS detector Solar : Xenon MASsive detector for Solar neutrinos 10 ton class Liq. Xe

Dark matter search E th = 20keV; 30 events/day E th = 5keV; 2000 events/day Expected signal of dark matter

Sensitivity of dark matter search 10 ton Liq. Xe Spin independent Spectrum only Seasonal variation pb

Double deta decay e-e- e-e- e-e- e-e- Majorana mass of neutrinos It is quite important to investigate whether the origin of the neutrino mass is Majorana type See-saw mechanism is correct ? 136 Xe(natural abundance 8.87%), double beta nuclei 2 2  0 2 

 background against    1/2 theory = 8 x y

Resolution by photon statistics 42000potons/MeV x 2.48MeV x 30%Q.E.  p.e.  0.6 % rms 10ton natural, 5 year 2600 keV Signal region  1/2 theory = 8 x y  background against 

Sensitivity of  10ton natural, 5 year Both +- sigmaOnly + sigma m Majorana sensitivity: 0.01 – 0.02 eV Resolution at 2.5 MeV Resolution at 2.5 MeV 0 2  lifetime sensitivity: several ×10 27 years

10t Liq. Xe 5yr (Cf. SK-I, ~13 events/day) Solar neutrinos pp: 10ev/day 7 Be: 5ev/day (> 50keV, SSM) Expected spectrum of solar neutrinos +e + e ~1% stat. error measurement of pp flux Quite High statistics

KamLAND and pp solar neutrinos will determine precise oscillation parameters Precise measurement of oscillation parameters Expected region using pp neutrinos (90 % C.L.) :  10 ton Liq. Xe  e scattering  5 years data  Statistical error and SSM prediction error(1%) Accuracy of mixing angle: sin 2 2  = 0.77  0.03(stat.+SSM)

Fiducial volume  rays from 238 U chain Background rejection 6 orders of magnitude reduction for gamma rays below 500keV  (U/Th/K/ Co/Cs/…) neutron   rays from 85 Kr, 42,39 Ar, U/Th Self- shield No long life isotope H 2 O, paraffin Distillation Self-shield of external gamma rays

Development of low background PMTs New type 2-inch PMT(developed with Hamamatsu Co.) Q.E. ~ 175nm Collection efficiency ~ 90% Quartz window Metal tube (low background) Parts were selected using HPGe Single p.e. distribution

Bq/PMTequiv New 2-inch PMT Metal for PMT bulb capacitor (film) Chip resistor Quartz (PMT) Cables PCB(PTFE) Usual PMTs Resistor capacitor Glass Epoxy PCB Selection of parts for the new type PMT Low BG PMT 238 U 1.8x10 -2 Bq 232 Th 6.9x10 -3 Bq 40 K 1.4x10 -1 Bq 60 Co 5.5x10 -3 Bq Bulb for PMT

100kg detector purpose MgF 2 window 54 2-inch PMTs Liq. Xe (30cm) 3 =30L=100Kg (1) Low background effort with new PMTs (2) Vertex/energy reconstruction (3) Demonstration of self shielding (4) e/  separation (5) R&D of purification system (6) Possible detection of 2  decay

100kg detector MgF 2 window

Supur-insulation 100kg detector: cooling Vacuum chamber (this time stainless steel) GM refrigerator ( ) Cooling and liq.Xe supply, recovery test in February using only 6 PMTs

100kg detector cooling PMT mouting One PMT per plane Temperature monitor PMT PMT HV ON 8 days detector Supply liq. Xe

100kg detector: Gas line Getter Original Xe Recovery Xe Emergency tank(9m 3 ) Vacuum chamber Emergency recovery line rupture disk Emergency valve Liq. N 2

Level Monitor 4 days Supply, recovery port 100kg detector: Liq.Xe supply and recovery Supply (2 days) recovery (0.85 days) L ML M HM H

We found that the PMTs work even at -90 ℃ 60 Co source on the detector 6 PMT test data Limit vertex position using (  of 6PMTs)/ (average of 6PMTs) 100kg detector: Test data Observed spectrum Simulation The observed spectrum is consistent with the simulation All  <1 All  <1

Shield of 100kg detector OFHC vacuum chamber, OFHC shield(5cm thick), Lead shield (15cm), Boron (10cm), Polyethylene(15 cm), Radon shield (EVOH sheet) Installation in May, June

Installation of Shield Door part is already installed. (May, 2003) Moved into clean room in Kamioka mine. Lead shield (15cm thick) OFHC shield(5cm) Full shield will be installed by the end of June, 2003.

Vertex/energy reconstruction (MC simulation) Make PMT hitmaps Maximize the likelihood: F(x, y, z; i): acceptance of scintillation light for i-th PMT from (x, y, z). GEANT based simulation gives F(xg, yg, zg, i) on a grid with 2.5cm spacing. F(x, y, z, i) is linearly interpolated by using F(xg, yg, zg, i). L: likelihood  : F(x, y, z) x (total p.e./total acceptance) n: observed number of p.e. Typical 1MeV alpha ray Red: true vertex Green: reconstructed

0.88cm (68%) 1MeV300keV 1.40cm (68%)  =62keV (gauss fit)  =33keV (gauss fit) Vertex/energy resolution (MC) Uniformly distributed source in the fv (20cm cube)

2 phase detector (S.Suzuki et al.) 100kg detector: background level ( expectation by simulation ) 0.1ppm 85 Kr 85 Kr~0.01ppm /kg/day/keV Gamma rays from 238 U, 232 Th, 40 K outside the chamber. 238 U: 2.4Bq, 232 Th: 1.4Bq, 40 K: 0.86Bq, determined by a HPGe. Events were reconstructed by the reconstruction tool. 100kg all volume estimated 100kg 20cm cube, ½ PMT cut Efficiency: 100keV 10keV

Purification by distillation R/D of purification system Simple distillation system for Kr Theoretically, 1/1000 reduction Process power: 0.6kg/hr Buffer tank Compressor Heat exchanger Purified Xe Xe input Refrigerators Purification tower ~3m 13 stages Heater Getter GXe flow LXe Kr Tower Boiling point: Xe=165K, Kr=120K, Ar=87K Test this purification system in 2003.

Next step: 800kg detector 800kg liquid Xe in PMTs 77% photo-coverage ~5 p.e./keV 80cm diameter

/kg/day/keV pp 7 Be , 8x10 21 yr External background in 800kg detector Dominant contribution is from PMT Assuming further 1/10 reduction of PMTs BG external  ray (60cm , 346kg) external  ray (40cm , 100kg ) Dark matter (10 -8 pb, 50GeV, 100 GeV)

Dark matter sensitivity 800kg detector Spin independent Spin dependent spectrum Seasonal variation

Requirements in background for 800kg detector External Environmental  rays: 15cm Pb + 5cm OFHC or water shield Fast neutron recoil at 10 keV : < 1/10000 of environment Thermal neutron absorption: < 1/400 of environment Internal 85 Kr: < 0.35 ppt of Kr (by distillation) 42 Ar, 39 Ar: < 0.1 ppm Ar (by distillation) Radon: < 1microBq/m 3 U/Th in Liq.Xe: < g/g ~2m of water shield

Conclusion Large volume liquid Xe detector is quite effective for dark matter, double beta decay and low energy solar neutrinos. R&D is going on using 100 kg detector. Using the 100 kg detector, we will test vertex and energy reconstruction, self-shielding, and purification of liquid Xe. The next step is 800 kg detector. The 800 kg detector is able to search for dark matter with 4 orders of magnitude better sensitivity than current experiments. Final goal of the XMASS project is 10 ton class detector for multi-purpose astro-particle physics.