1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.

Slides:



Advertisements
Similar presentations
Chapter 12 Simple Linear Regression
Advertisements

Pertemuan 03 Teori Peluang (Probabilitas)
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 02 Analisis Data Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Chapter 14, part D Statistical Significance. IV. Model Assumptions The error term is a normally distributed random variable and The variance of  is constant.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Regresi dan Korelasi Linear Pertemuan 19
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Uji Tanda dan Peringkat Bertanda Wilcoxon Pertemuan 25 Matakuliah: Statistika Psikologi Tahun: 2008.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 18 Pembandingan Dua Populasi-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter 12b Testing for significance—the t-test Developing confidence intervals for estimates of β 1. Testing for significance—the f-test Using Excel’s.
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 5 月 4 日 第十二週:複迴歸.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan #3 Clocks and Realtime Matakuliah: H0232/Sistem Waktu Nyata Tahun: 2005 Versi: 1/5.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
1 1 Slide Simple Linear Regression Estimation and Residuals Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Lecture 11: Simple Linear Regression
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Regresi dan Korelasi Pertemuan 10
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
Statistics for Business and Economics (13e)
Slides by JOHN LOUCKS St. Edward’s University.
Pertemuan 18 Pengujian Hipotesis Lanjutan
Essentials of Statistics for Business and Economics (8e)
St. Edward’s University
Presentation transcript:

1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat memilih statistik uji untuk koefisien regresi dan korelasi.

3 Outline Materi Pengujian koefisien regresi dengan analisis varians Inferensia tentang koefisien korelasi

4 Testing for Significance To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of  1 is zero. Two tests are commonly used –t Test –F Test Both tests require an estimate of  2, the variance of  in the regression model.

5 Testing for Significance An Estimate of  2 The mean square error (MSE) provides the estimate of  2, and the notation s 2 is also used. s 2 = MSE = SSE/(n-2) where:

6 Testing for Significance An Estimate of  –To estimate  we take the square root of  2. –The resulting s is called the standard error of the estimate.

7 Hypotheses H 0 :  1 = 0 H a :  1 = 0 Test Statistic Rejection Rule Reject H 0 if t t  where t  is based on a t distribution with n - 2 degrees of freedom. Testing for Significance: t Test

8 t Test –Hypotheses H 0 :  1 = 0 H a :  1 = 0 –Rejection Rule For  =.05 and d.f. = 3, t.025 = Reject H 0 if t > –Test Statistics t = 5/1.08 = 4.63 –Conclusions Reject H 0 Contoh Soal: Reed Auto Sales

9 Confidence Interval for  1 We can use a 95% confidence interval for  1 to test the hypotheses just used in the t test. H 0 is rejected if the hypothesized value of  1 is not included in the confidence interval for  1.

10 Confidence Interval for  1 The form of a confidence interval for  1 is: where b 1 is the point estimate is the margin of error is the t value providing an area of  /2 in the upper tail of a t distribution with n - 2 degrees of freedom

11 Contoh Soal: Reed Auto Sales Rejection Rule Reject H 0 if 0 is not included in the confidence interval for  1. 95% Confidence Interval for  1 = (1.08) = /or 1.56 to 8.44/ Conclusion Reject H 0

12 Testing for Significance: F Test n Hypotheses H 0 :  1 = 0 H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 n Test Statistic F = MSR/MSE n Rejection Rule Reject H 0 if F > F  where F  is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator.

13 n F Test Hypotheses H 0 :  1 = 0 Hypotheses H 0 :  1 = 0 H a :  1 = 0 H a :  1 = 0 Rejection Rule Rejection Rule For  =.05 and d.f. = 1, 3: F.05 = For  =.05 and d.f. = 1, 3: F.05 = Reject H 0 if F > Reject H 0 if F > Test Statistic Test Statistic F = MSR/MSE = 100/4.667 = Conclusion Conclusion We can reject H 0. Example: Reed Auto Sales

14 Some Cautions about the Interpretation of Significance Tests Rejecting H 0 :  1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Just because we are able to reject H 0 :  1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y.

15 n Confidence Interval Estimate of E ( y p ) n Prediction Interval Estimate of y p y p + t  /2 s ind y p + t  /2 s ind where the confidence coefficient is 1 -  and t  /2 is based on a t distribution with n - 2 d.f. Using the Estimated Regression Equation for Estimation and Prediction

16 Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = (3) = 25 cars Confidence Interval for E(y p ) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: = to cars Prediction Interval for y p 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: = to cars ^ Contoh Soal: Reed Auto Sales

17 Residual for Observation i y i – y i Standardized Residual for Observation i where: Residual Analysis ^^^^

18 Contoh Soal: Reed Auto Sales Residuals

19 Contoh Soal: Reed Auto Sales Residual Plot

20 Residual Analysis Detecting Outliers – An outlier is an observation that is unusual in comparison with the other data. – Minitab classifies an observation as an outlier if its standardized residual value is +2. – This standardized residual rule sometimes fails to identify an unusually large observation as being an outlier. – This rule’s shortcoming can be circumvented by using studentized deleted residuals. – The |i th studentized deleted residual| will be larger than the |i th standardized residual|.

21 Selamat Belajar Semoga Sukses.